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Abstract

This dissertation presents the measurement of the semi-inclusive cross-sections

for �� and ���-nucleon deep inelastic scattering interactions with two oppositely

charged muons in the �nal state. These events dominantly arise from production

of a charm quark during the scattering process. The measurement is obtained

from the analysis of 5102 �� induced and 1458 �� induced events collected with

the NuTeV detector exposed to a sign selected beam at the Fermilab Tevatron.

A leading-order QCD analysis is used to predict charm production cross-section

parameters such as the charm mass mc, strange and anti-strange sea quark prob-

ability distribution functions s(x; q2), semi-leptonic charm decay branching ratio

Bc, and charm fragmentation function parameter �. The result is presented as a

nearly model-independent dimuon production cross-section table. I also extract

cross-section measurements from a re-analysis of 5030 �� induced and 1060 �� in-

duced events collected from the exposure of the same detector to a quad-triplet

beam by the CCFR experiment. The resulting cross-section tables are the most

statistically precise measurements of neutrino-induced dimuon production cross-

sections to date. These measurements should be of broad use to phenomenologists

interested in the dynamics of charm production, the strangeness content of the

nucleon, and the CKM matrix element Vcd.
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Chapter 1

Introduction

Neutrino-nucleon deep inelastic scattering is a very e�ective way to probe the

structure of the nucleon and to study the dynamics of heavy quark production. The

presented analysis focuses on charm quark production in deep inelastic scattering

of neutrinos and anti-neutrinos o� a nucleon. Data sample is based on opposite sign

dimuon events that was obtained by the Fermilab experiment E815 (or NuTeV)

experiment in �xed-target run during 1995-1998 at the Fermi National Accelerator

Laboratory.

Dimuon events primarily come from charged current (CC) production of charm

quarks through the following sub-processes:

�� + (d; s)! �� + c+X (1.1)

,! �+ + ���;

��� + �(s)! �+ + �c+X (1.2)

,! �� + ��:

In Eq.1.1, a neutrino (��) interacts with a down (d) or strange (s) quark inside

1



a nucleon and produces a negatively charged muon (��), a charm quark (c), and a

hadron shower (X). The charm quark pairs with an anti-quark (�q) from quark sea

forming one of the D mesons. A D meson decays about 10% of the time into �+

and anti-neutrino. In second equation all particles in �rst one are substituted by

their anti-particles. It is important to point out that in anti-neutrino scattering

almost all dimuon events come from anti-strange quark while in neutrino scattering

only 50% of events are initiated by the strange quark.

Therefore the dimuon data allows to measure the charm quark massmc, nucleon

strange quark probability distribution functions, the fragmentation function that

describes how a charm quark couples with anti-quark to form a charmed hadron,

and the semi-leptonic charm decay branching ratio (Bc).

Following this rather terse statement of the physics addressed in this thesis

are several sections that brie
y introduce quarks and leptons and forces by which

they interact as a part of the so-called Standard Model. A brief explanation of

deep-inelastic scattering is introduced, as are descriptions of other processes that

have to be dealt with in this analysis.

Chapter 2 provides more detail on neutrino-nucleon scattering and charm pro-

duction. Chapter 3 describes the experimental apparatus. Chapter 4 outlines the

selection criteria used in this analysis. The physics results are presented in chapters

5 and 61.

1.1 Standard Model

All forces in modern physics are described by quantum �eld theories (QFT). Forces

are mediated by �eld quanta, the so-called gauge bosons. Currently there are four

known forces: strong, electromagnetic, weak and gravitational. The dynamics of

each force are determined by an underlying gauge symmetry[1]. Their relative

1A condensed version of this thesis has been published in Physics Review D [43].
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force relative strength Mediator Participating

fermions

strong 1. gluons (g) quarks

electromagnetic 1/137 photon(
) quarks and

charged leptons

weak 10�5 W+, Z all

gravity 10�40 [graviton(G)] all

Table 1.1: The fundamental forces

strengths and mediator particles are shown in the Table 1.1. The Standard Model

(SM)[2] is a uni�ed theory of strong, electromagnetic, and weak forces. The strong

force is responsible for short range binding of protons and neutrons within nucleus.

The theory describing the strong force obeys an SU(3)-color symmetry and is

known as Quantum Chromodynamics (QCD)[3, 4]. The strong force is mediated

by gluons. Each quark carries a color charge that can be denoted as red, blue, or

green. Each particle must be color neutral, meaning that it is an SU(3) singlet.

Mesons are particles composed of a quark and an anti-quark. Mesons are color

neutral because an anti-quark has an opposite color as the quark. Baryons are

composed of three quarks or anti-quarks so that the combined color singlet can be

thought of as blue + red + green = white.

The electroweak gauge theory[5, 6], based upon the SU(2) � U(1) symmetry

group, uni�es electromagnetic and weak forces. The electromagnetic force obeys a

U(1) charge symmetry and is mediated by massless photons, while the weak force

obeys SU(2) weak isospin symmetry and is mediated by relatively heavy W and

Z bosons. W bosons can carry electric charge of +1 or -1 (in units of the proton

charge); the Z boson has no charge. If an interaction is mediated by a W boson,

it is a charged current interaction (CC). The Z boson is associated with neutral

current (NC) interactions. The combination of electroweak and strong interactions

is now described by the SU(3) � SU(2) � (U1) group in a scheme referred to as

the Standard Model (SM).
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QUARKS

electric charge lightest heavier heaviest

+2/3e up (u) charm (c) top (t)

-1/3e down (d) strange (s) bottom (b)

LEPTONS

electric charge lightest heavier heaviest

-1e electron (e) muon (�) tau(�)

0 e-neutrino(�e) �-neutrino(��) � -neutrino(�� )

Table 1.2: The constituents of matter

All elementary particles in the SM are listed in the Table1.2. All matter on

Earth is build from u and d quarks and electrons. The proton is a combination

of uud quarks and the neutron is a combination of ddu quarks. These u and d

quarks are thus referred to as \valence" quarks. All quark types can also show up

inside a nucleon as a quark-anti-quark quantum 
uctuation; in this case, they are

are referred to as \sea" quarks.

The neutrino is a neutral lepton and participates only in weak interactions. The

process described by Eq.1.1 is a weak CC interaction. All neutrino CC interactions

with quarks change 
avor (or quark type). For example: if a neutrino strikes a d

quark via W boson exchange, the d quark changes into some other quark that can

be an u, c, or t. In nature, the weak 
avor eigenstates of quarks that participate

in CC interactions are not the same quantum states as those that form massive

propagating hadrons. The weak eigenstates of the down-like quarks are written as

an admixture of the mass eigenstates of the down-like quarks:

V =

0
BBBB@

d0

s0

b0

1
CCCCA =

0
BBBB@

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1
CCCCA

0
BBBB@

d

s

b

1
CCCCA (1.3)

The matrix in Eq.1.3 is called the Cabibbo-Kobayashi-Maskawa (CKM) matrix.

The CKM matrix is assumed to be unitary. This implies that there are no 
avor-

changing NC interactions, and that, for example, jVudj2 + jVcdj2 + jVtdj2 = 1.
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1.2 Asymptotic Freedom

The SU(3)-color symmetry group (on which QCD is based) is non-Abelian, which

means that the mediators (gluons) are allowed to interact with one another. Each

gluon carries one unit of color and one of anti-color. In terms of color SU(3)

symmetry, there are eight states that form a \color octet", and one state that

is a \color singlet". In nature, \free" gluons do not exist; all free particles are

color singlets. Therefore there are only eight gluons, and all of them are color

octets. If a color singlet existed, it could be exchanged between between color

singlets (neutron and proton, for example), giving rise to a long-range force. But

we know that the strong force is of short range. Physically, this leads to the

e�ect (asymptotic freedom) that the coupling strength decreases as the interacting

particles get closer together (larger jq2j). This can thought of as the consequence of
the Heisenberg uncertainty principal: the shorter the distance between interacting

particles (smaller interaction time), the higher the energy carried by the mediator

particle. The qualitative explanation is that gluon-gluon interactions produce an

\anti-screening" a�ect, Fig.1.1.

Figure 1.1: Gluon screening.

In neutrino scattering, if a W boson has high enough squared momentum Q2,

it strikes a quark inside a neucleous that is \free", or not bound to other quarks

(a picture known as the parton model). The strong force that is responsible for

binding quarks is weaker at short distances or, equivalently, largeQ2. This property
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is referred to as asymptotic freedom and is expressed by the formula

�s(Q
2) =

12�

(11n� 2f) log(Q2=�2
QCD)

; (1.4)

where �s is a strong coupling constant, and �QCD is a constant around 200 MeV[7].

n is the number of colors (3 in SM), f is the number of 
avors with m2
quark � Q2

(6 in general, 3 at NuTeV).

If Q2 � �2
QCD, the perturbative description of QCD is valid. Otherwise,

asymptotic freedom breaks down, the parton model is no longer valid, and, as

a result, quarks cannot be treated as free particle. In this case QCD becomes non-

perturbative. In NuTeV dimuon events have average Q2
vis � 21:1 GeV2 � �2

QCD,

thus it is appropriate to think of a neutrino interacting with a single quark that is

\free". Therefore perturbative QCD is valid as a theoretical model in the NuTeV

regime.

The coupling strength in QCD behaves in exactly the opposite way as the

coupling strength in QED, which describes electromagnetism. In QED, photons

are the electromagnetic force carriers. A photon is a \QED color singlet", which

means that it exists as a free particle, and can be exchanged between other color

singlets, giving rise to the long range property of the electromagnetic force. In

QED, the closer interacting particles get together (larger jqj2), the stronger the

force gets.

1.3 Deep Inelastic Scattering

The deep inelastic scattering model assumes that an incoming neutrino interacts

with a single free quark inside the nucleon. In the previous section it is shown that

this is an appropriate assumption for NuTeV CC events. In order for neutrino

scattering to be deeply inelastic, the time of interaction must be small so that the

neutrino exchanges energy only with the struck quark. Therefore there are two

conditions that must be true for interaction to be called deep inelastic:

6



Figure 1.2: CC diagram ��(���)N ! ��(�+)X.

�int � 1=E� � �glue; (1.5)

Q2 � �2
QCD:

The �rst expression in Eq.1.6 states that the duration of an interaction must be

much smaller than the time it takes two quarks to exchange a gluon. It amounts to

requiring the neutrino to transfer a high energy. The second equation means that

the momentum transferred by W+(W�) must be much greater than the binding

energy between quarks inside nucleon so that a perturbative QCD treatment can

be applied.

Charged current deep inelastic scattering is illustrated by the Feynmann dia-

gram shown in Fig.1.2. At the primary vertex the muon neutrino emits aW boson

and turns into a muon. The W boson interacts with one of the quarks within the

nucleon at the secondary vertex, changing the quark's 
avor. This quark, along

with the remaining quarks inside nucleon, must quickly combine with other quarks

to create mesons and baryons. In the detector this results in an outgoing muon

and a burst of hadrons as shown in Fig.1.3.
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Figure 1.3: Typical CC event

Figure 1.4: CC charm production ��(���)N ! ��(�+)X.

1.4 Dimuon production

In the CC interaction shown in Fig.1.2, the W boson could hit d or s quark.

There is a small, but non-zero, probability that d quark will turn into a c . The

probability of an s quark turning into c is close to 1. Since there are no valance

strange quarks, the d valance quark distribution dominates s quarks. As a result,

a charm quark is produced approximately half of a time from d and half of a time

from s quarks. In the case of the anti-neutrino interactions, an anti-charm quark

�c can come either from �d or from �s, only this time both �d and �s quarks are sea
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Figure 1.5: Typical dimuon event

quarks; and, since Vcs is much bigger than Vcd, almost all charm production comes

from �s quarks.

The dimuon event starts exactly like an ordinary CC event except the W strikes

a s or d quark inside a nucleon turning it into charm quark c . The charm quark

combines with some anti-quark from the quark sea forming a charmed hadron;

either a D0 (c�u), D+ (c �d), or D+
s (c�s) meson or a �c (cud) baryon. A charmed

hadron weakly decays approximately 10% of the time into a neutrino and a muon

that carries opposite charge from the �rst muon. In the detector these events have

a very distinct signature called a dimuon event: two oppositely charged muons

and a hadron shower as shown in Fig.1.5. Muons are easily recognized as the only

particles that can penetrate a substantial distance through the detector steel. The

only other signi�cant source of a signal like that would be from a second muon

produced inside the hadronic shower of an ordinary CC process. This turns out to

be a fairly rare occurrence.

The focus of this analysis is to select dimuon events from a data sample and

compare them to Monte Carlo prediction that uses speci�c dimuon production

and background models by performing maximum likelihood �t. As a result of the

�t, I extract parameters such as charm quark mass mc, shape and absolute value

of strange sea, charm - anti-quark fragmentation, and D meson decay branching
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ratio Bc. I also developed a method to \invert" the model so that the result can be

presented in nearly model-independent way that would make testing of di�erent

theories of charm production easy to do.
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Chapter 2

Neutrino-Nucleon Scattering and

Charm Production

Neutrinos are excellent probes for studying the structure of hadrons because they

are structureless and chargeless elementary particles whose electroweak interac-

tions are well understood. Neutrinos are always polarized, and therefor suited for

studies of the helicity dependent dynamics of the nucleon constituents. This is

valuable because the W� (W+) boson couples only to left (right) handed fermions

and right (left) handed anti-fermions. The process of probing nucleon structure

starts with using inclusive charged current data to the measure nucleon's structure

functions: a complete set of Lorentze scalars that parameterize the structure of the

nucleon. Nucleon structure is associated with partons, QCD's quarks and gluons.

QCD describes the parton dynamics, and the structure function measurements

provides a determination of the nucleon's valence and sea quark distributions as

well as the gluon distribution.

Dimuon data, a sub-sample of full charged current sample, provides a determi-

nation of a strange sea quark distribution. Dimuon events are the result of heavy

charm quark production. The NuTeV kinematic region permits to a measurement

of the charm quark mass mc. In order for a charm particle to produce a second
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muon, it must decay; thus, it is possible to measure the semileptonic decay branch-

ing ratio Bc, or, equivalently, the Vcd CKM matrix element, and to study charm

fragmentation models. Leading order QCD (LO) and next-to-leading order QCD

(NLO) treatments of dimuon production are also discussed in this chapter.

2.1 Charged Current Kinematics

Kinematics for a charged current interaction are illustrated on Fig. 2.1.

νµ (ν )µ
µ  (µ )

q=k-k’

k’k

xP

Figure 2.1: Kinematics of Neutrino Nucleon Scattering.

The energy-momentum four-vectors for the incoming neutrino (k), muon at a

primary vertex (k0), target nucleon (p), and hadronic system (p0) may be written

k = (E�; 0; 0; E�); (2.1)

p = (M; 0; 0; 0);

k0 = (E�; p� sin �� cos��; p� sin �� sin��; p� cos ��);

p0 = p+ q = p+ (k � k0);

where E� is the energy of the incoming neutrino; E�, ��, and �� are the energy,

polar angle, and azimuthal angle of the muon; q is the 4-momentum of the W

boson; and M is the nucleon mass. The following kinematic variables are usually

de�ned:

Q2 = �q2 = �(k � k0)2 = �m2 + 2E�(E� � p�cos��); (2.2)
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x =
�q2
2p � q =

Q2

2MEhad
;

y =
p � q
p � k =

Ehad

E�
;

z = ED=Ec;

� =
p � q
M

= Ehad;

where Q2 is the squared momentum transferred by the W-boson from the primary

to the secondary vertex, x is the Bjorken scaling variable, y is the inelasticity that

determines what fraction the total initial energy is transferred to the hadrons, and

� is the energy transfered to the hadronic system. In the case of charm production,

z is the ratio of the energy carried by the D-meson to the energy carried by the c

quark.

In the case of massless �nal state quarks, conservation of 4-momentum requires

(�P + q)2 ' 0; (2.3)

�2p2 + q2 + 2 � �p � q ' 0;

� =
�q2
2ME�

= x;

where � is the fraction of the nucleon 4-momentum carried by the struck quark.

If the momentum transferred is much greater than the mass of a struck quark

(�q2 � x2p2), then � �= x. Therefor, x is associated with the momentum carried

by the struck quark for the case of massless quark production.

In charm semi-muonic decay, there is always a neutrino that completely es-

capes detection and can only be accounted for in a Monte Carlo simulation. The

variables given in Eq.2.4 are calculated from quantities that are observed in the

detector (E�; Ehad; ��) or \visible" quantities which correspond to the \true" vari-

ables de�ned in Eq.2.2. They appear with a subscript \vis", and are de�ned as

E�
vis = E�1 + E�2 + Ehad; (2.4)

Q2
vis = �m2

� + 2E� � E�1 � (1� cos �1);

xvis = Q2
vis=(2 �M �Ehad);
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yvis = Ehad=E
vis
� ;

zvis = E�2=(Ehad + E�2):

2.2 Charged-Current Cross Section

To derive the neutrino-nucleon scattering di�erential cross section, one starts with

Fermi's Golden Rule [4]

d� =
2�

�h
d�
jM j2
�

; (2.5)

where � is the incident neutrino 
ux, jM j2 is the squared scattering amplitude,

and d� is the density of �nal states.

The matrix element M factorizes into a product of leptonic and hadronic cur-

rents linked by the W boson, and can be written as

M = L��

p
2GF

1 + Q2

M2
W

W ��; (2.6)

where the convention that a double appearance of an index implies a sum over the

4 space-time dimension. The leptonic tensor is precisely known from the SM to be

L�� = �u(k
0

)
�(1� 
5)u(k) (2.7)

= 8(k�k
0

� + k�k
0

� � g��k � k0 � i���
Æk

k

0Æ)

where the last term is negative (positive) for neutrinos (anti-neutrinos).

The hadronic tensor parameterizes the unknown structure of the boson-nucleon

vertex. It can depend only on two independent vectors - p and q, and so can be

written as a sum of all possible second-rank tensors formed from p and q:

W �� = � g��W1 +
p�p�

M2
W2 � i���
Æp
qÆW3 (2.8)

+
q�q�

M2
W4 +

(p�q� + p�q�)

M2
W5

+
i(p�q� � p�q�)

2M2
W6;
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where Wi are Lorenz scalars that depend on q
2 and p �q. Contracting L��W

��, dis-

carding terms multiplied by W4, W5, and W6 that are proportional to the incident

lepton mass, and using the Jacobian transformation

E�
d3�

d3k0
=

2MEx2

�Q2

d2�

dxdQ2
; (2.9)

the di�erential cross section can be written as a function of x and Q2 as

d2�

dxdQ2
=

G2
F

2�x(1 +Q2=M2
W )2

(xy2MW1 + (2.10)

(1� y � xyM

2E
)�W2 � xy(1� y

2
)�W3):

Scaling structure functions are introduced via

2xF1(x;Q
2) = 2xMW1(�;Q

2); (2.11)

F2(x;Q
2) = �W2(�;Q

2);

xF3(x;Q
2) = x�W3(�;Q

2);

Finally, in terms of these structure functions, the di�erential cross section be-

comes

d2��(��)

dxdy
=

G2
F

2�x(1 +Q2=M2
W )2

h
xy2F

�(��)
1 + (2.12)

(1� y � xyM

2E
)F

�(��)
2 �xy(1� y

2
)F

�(��)
3

�
:

This is the master equation of deep inelastic neutrino scattering. It shows that

measurement of the di�erential cross section is equivalent to to a measurement of

three structure functions that contain all information about the struck nucleon.

2.3 The Parton Model

In the limit of Q2 !1 and � !1, the structure functions F (x; q2) remain �nite,

and, to �rst approximation, dependent only on the dimensionless and �nite ratio
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of these two variables, �q2=2M�, which is equal to Bjorken x. This is known as

the Bjorken scaling hypothesis.

In the parton model the nucleon is represented as a collection of free partons.

Each parton is a spin-1/2 (q; �q) or spin-1 (g) particle . The incident neutrino carries

spin 1/2. Elastic scattering of point particles depends only on the center of mass

energy and angular momentum of the system. The scattering angle in the center

of mass frame is related to inelasticity y via

cos �� =
1 + y

2
: (2.13)

The scattering cross section can be written for the three possible total spin con-

�gurations as:

total spin 0 :
d��q

dy
=

d���q

dy
=

G2
FME�

�(1 +Q2=M2
W )2

; (2.14)

total spin 1 :
d��q

dy
=

d���q

dy
=

G2
FME�

�(1 +Q2=M2
W )2

(1� y)2;

total spin 1=2 :
d��k

dy
=

d���k

dy
=

2G2
FME�

�(1 +Q2=M2
W )2

(1� y);

where k represents the combination of partons associated with total spin 1/2.

De�ning q(x;Q2), �q(x;Q2), k(x;Q2) to be the probability of �nding a particle

inside nucleon carrying x fraction of nucleon's momentum, neutrino scattering

cross section can be written as

d2��N

dxdy
=

h
q(x) + �q(x)(1� y)2 + 2k(x)(1� y)

i
; (2.15)

d2���N

dxdy
=

h
q(x)(1� y)2 + �q(x) + 2k(x)(1� y)

i
:

Comparing the above expression with Eq.2.12, one can write structure functions

in terms of parton probability distributions (PDF):

2xF1 = xq(x) + x�q(x); (2.16)

F2 = xq(x) + x�q(x) + 2k(x);

xF3 = xq(x)� x�q(x):
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To leading order in QCD the spin 1/2 cross section is zero. This implies the the

Callan-Gross relationship

2xF1 ! F2 as Q
2 !1: (2.17)

2.4 Neutrino Scattering o� a Real Target

In NuTeV, neutrinos scatter of an iron target that is a nearly equal mixture of

protons and neutrons. One must rewrite the scattering cross sections to take into

account the fact that protons and neutrons have di�erent intrinsic structure.

Charged current interactions change the 
avor of the struck quark, and conser-

vation of charge at the quark vertex limits neutrinos to scatter from d, s, �u and

�c quarks. Anti-neutrinos can scatter from �d, �s, u and c quarks. The neutron can

be obtained from the proton by changing all d-type quarks into u-type quarks and

vice-versa, with essentially no change in mass - a principle called isospin invari-

ance. Isospin invariance demands a symmetry between the proton and neutron

light quark densities

d(x) � dp(x) = un(x) ; u(x) � up(x) = dn(x);

�d(x) � �dp(x) = �un(x) ; �u(x) � �up(x) = �un(x):

Since nucleons do not exhibit net strangeness or charm, it is reasonable to assume

s(x) � sp(x) = sn(x) ; c(x) � cp(x) = cn(x);

�s(x) � �sp(x) = �sn(x) ; �c(x) � �cp(x) = �cn(x):

Combining all of the above together, one can write parton densities for an isoscalar

nucleon (1
2
(proton+ neutron)) in terms of proton densities as

q�N =
1

2
[u(x) + d(x) + 2s(x)] ; (2.18)

�q�N =
1

2

h
�u(x) + �d(x) + 2�c(x)

i
;

q��N =
1

2
[u(x) + d(x) + 2c(x)] ;
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�q��N =
1

2

h
�u(x) + �d(x) + 2�s(x)

i
:

Substituting the above expressions into 2.16 yields

2xF �N
1 = x[u(x) + �u(x) + d(x) + �d(x) + 2s(x) + 2�c(x)]; (2.19)

2xF ��N
1 = x[u(x) + �u(x) + d(x) + �d(x) + 2�s(x) + 2c(x)];

xF �N
3 (x) = xuV (x) + xdV (x) + 2xs(x)� 2x�c(x);

xF ��N
3 (x) = xuV (x) + xdV (x)� 2x�s(x) + 2xc(x):

where uV � u� �u and dV � d� �d are the proton's so-called valence densities that

obey the baryon conservation conditions

Z
(u� �u)dx = 2; (2.20)Z
(d� �d)dx = 1:

2.5 LO QCD Charm Production

At the hadronic vertex a charm quark can be produced only from d and s quarks

in neutrino interactions and from �d and �s quarks in anti-neutrino interaction.

Therefor one writes structure functions, for charm production for zero charm mass,

as

2xF �
1 = xF3 = jVcdj2[xu(x) + xd(x)] + jVcsj22xs(x); (2.21)

2xF ��
1 = �xF ��

3 = jVcdj2[x�u(x) + x �d(x)] + jVcsj22x�s(x):

The charm quark massmc is not negligible compared to the average momentum

transfer Q2 in NuTeV. If a massless quark carrying momentum fraction �p interacts

with a W-boson with momentum q , the 4-momentum conservation requirement

in Eq.2.3 is modi�ed to

(�p+ q)2 = m2
c (2.22)
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Solving the above equation for � and neglecting second order terms in M=Q, one

obtains

� = x(1 +
m2

c

Q2
): (2.23)

The variable � is known, for historical reasons, as the slow rescaling variable and

should be substituted for x into structure functions on the right-hand side of

Eq.2.21. Substituting Eq.2.21 into Eq.2.12, and switching from x to � one �nally

arrives to the charged current charm production cross-sections

d2�(�N!c��)

d�dy
= �

n
[u(�) + d(�)] jVcdj2 + 2s(�)jVcsj2

o
(2.24)

�(1� y +
xy

�
� Mxy

2E
);

d2�(��N!�c�+)

d�dy
= �

nh
�u(�) + �d(�)

i
jVcdj2 + 2�s(�)jVcsj2

o

�(1� y +
xy

�
� Mxy

2E
):

The multiplicative factor 1�y+ xy
�
�Mxy

2E
emerges from keeping terms proportional

to mc and M .

2.6 Next-to-Leading Order Charm Production

Formula 2.24 describes neutrino scattering only from target's quarks. It corre-

sponds to the Feynmann diagram in Fig.2.2 on the far left. On the same �gure, it

is shown that charm can be produced via other higher order processes. Perturba-

tive QCD permits calculation of transition probabilities as a Taylor expansion in

terms of strong coupling constant �S.

The quark-initiated diagram is the lowest order in �S order term and is called

leading order (LO). The rest of the diagrams on Fig.2.2 are of order �2
S and all

together are called next-to-leading order diagrams (NLO). In NuTeV we observe

the dimuon �nal state. This means that �rst the charm quark has to be produced,

after it charm quark has to recombined with one of the anti-quarks turning most
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Figure 2.2: LO and NLO Feynmann diagrams.

of the time into D-meson, and at the end D-meson has to decay weakly. In LO the

probability of that happening can be factorized and written down as the product of

three di�erent probabilities:production, fragmentation, and decay. In NLO dimuon

production, probability does not factorize and fragmentation must be convoluted

with the charm production cross section.
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Chapter 3

E815 Experimental Apparatus

This chapter describes the NuTeV beamline, detector, and calibration beam.

3.1 The Sign Selected Neutrino Beam

NuTeV uses a beamline constructed in order to enable separate running in neutrino

or anti-neutrino mode. NuTeV's detector is essentially the same as that used

by a series of earlier neutrino experiments collectively referred to as \CCFR".

In both experiments neutrinos and anti-neutrinos were produced as the result

of pion (�) and kaon (K) decays, particles produced in collisions of 800 GeV

protons with a beryllium oxide target (BeO) at the Tevatron (Fig.3.1). The BeO

target is chosen because of its thermal and structural properties, and because low-Z

materials are more eÆcient in producing neutrinos. NuTeV's beamline features the

Sign-Selected Quadrupole Train (SSQT) shown in Fig.3.2. Dipole magnets were

always set up so that only �'s and K's of a particular sign would pass through

the SSQT. Quadrupole magnets then focus the remaining charged particle beam.

Positively charged particles decay into neutrinos while negatively charged particles

decay into anti-neutrinos. This knowledge greatly enhances NuTeV capability

of identifying primary and secondary muons in dimuon events. In � mode the
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contamination of �� was ��=� = 0:8� 10�3. In �� mode, the ratio �=�� = 4:8� 10�3.

After traveling through the magnets in Fig.3.2 the beam consist of �'s and

K's of a particular sign with mean energy of about 250 GeV. These particles

travel through a 320 m decay pipe where approximately 5% of them decay into

a muon and a neutrino (or anti-neutrino). After the decay pipe, a 915 m berm

consisting of iron and earth stops muons from entering the NuTeV detector, leaving

only neutrinos from the primary beam. Some neutrinos actually interact in the

berm producing secondary muons called straight through muons that are used for

alignment and calibration.

The Tevatron sends 1012 protons to the BeO target in short bursts of 4 ms long

\pings". The period of time during which neutrinos arrive at NuTeV detector is

called the neutrino, or fast gate. In 60 seconds there are 4 or 5 fast gates. The

remainder of the 60 seconds is called the slow gate, during which calibration data

and cosmic ray events for background studies are recorded in the detector. The

timing of the Tevatron beam is shown in Fig.3.3.

3.2 Lab E Detector

The NuTeV detector, shown in Fig.3.4, is approximately 3 � 3 m2 across and 28

meters long; it weighs over 1000 tons. The detector consists of two major parts:

the target calorimeter and the toroid muon spectrometer. The muon spectrometer

measures the momentum of muons, and the calorimeter measures the energy of

hadron shower as well as a part of the muon energy deposited by traveling through

the calorimeter, the position of the interaction, and the primary and secondary

muon scattering angles. The calorimeter has a basic repeating structure of an iron

sheet and scintillation counter. Details of the detector can be found in several

places [29].

The energy of hadrons (muons) in the calorimeter is measured by liquid scin-
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tillation counters. A hadron or a muon ionizes particles in the liquid scintillator

which results in emission of a number of photons that are collected and counted

by phototubes positioned at the four corners of the counter. The un-ampli�ed re-

sponse from each phototube is called the low. The combination of all lows from a

counter is ampli�ed by 100 and piped through a discriminator. The discriminator

threshold is set to 150 mV, which is approximately 1/4 of an energy of a minimum

ionizing particle (MIP). The resulting signal is called an s-bit. S-bits are used to

�nd muons in the detector. Each low is ampli�ed by 10 and sent to an adc counter

as high. Highs are used to de�ne the relationship between muon energy loss and

phototube response, called a MIP (minimum ionizing particle), the standard unit

of energy in the calorimeter. Lows from all counters in the area of the hadron

shower are translated then into hadronic energy. The hadron energy resolution is

measured in test beam data to be

�E
E

= 0:024� 87:4%p
E

� 4:38� 10�6

E
: (3.1)

The hadron energy scale uncertainty is measured with the testbeam to be 0:5% [29].

The muon energy is measured by the calorimeter (dE=dx) and the muon spec-

trometer (E�ff ). When a muon 
ies through the calorimeter it loses energy that

is measured by translating the response of scintillation counters that are outside

of the hadron shower into deposited energy. Since a muon is a charged particle it

bends when it passes through the toroid. The energy of the muon when it enters

the front face of the toroid (E�ff ) is calculated from its curvature. Of course, a

muon also loses some energy when it travels through the toroid. The toroid resolu-

tion, dominated by multiple Coulomb scattering, is measured to be
�E�ff
E�ff

= 11%.

The dE=dx usually is signi�cantly smaller than E�ff and is known much better

than 11%. The result is that �E�
E�

= 11%. The muon scale uncertainty is measured

with the testbeam to be 1% [29].

The toroid also provides information about the charge of a muon. The SSQT

always leaves �'s or K's of a designated sign. Positively charged particles decay

into neutrinos, and negatively charged ones decay into anti-neutrinos. Neutrino
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charged-current interactions have negatively charged muons at the primary vertex

and anti-neutrinos produce positively charged muons. The magnet polarity is

always chosen (focusing mode) so that the muon from primary vertex has a positive

curvature or, in other words, bends inwards in the toroid as is shown in Fig.1.3. In

the case of dimuon production, the secondary muon has the opposite charge from

the primary muon which always has a positive curvature. Thus the identi�cation of

the primary and secondary muons for dimuon events is easy and straightforward.

Measuring one sign is enough.

The toroid consists of three sets of toroid magnets separated from each other

by a set of drift chambers. Drift chambers are responsible for muon track re-

construction. Each chamber region is called a gap. A drift chamber is a device

that measures the position of a charged particle track. It consists of parallel wires

exposed to high electric potential. The charged particle, passing through a drift

chamber, ionizes gas inside it. Electrons, that are the result of the ionization, drift

in the electric �eld to the charged wire with a constant drift velocity. Their arrival

time permits an accurate calculation of the charged particle's position in one di-

mension, so two adjacent orthogonal drift chamber planes are used to determine

the x-y position.

At every moment in time, the data acquisition system (DAQ) reads in infor-

mation from all parts of the detector and continuously writes it to the computer

storage device. There are several general event types that might happen in the

detector each resulting in a unique signal pattern. These patterns are recognized

and information is stored under so called \triggers". All triggers are listed in Table

3.1. For this analysis all events are collected under Trigger 1, which is designed

to recognize charged current events. Trigger 1 events have the following topology:

the event must happen within the fast gate; the veto wall (an array of solid scin-

tillation counters) in front of Lab E must not �re, meaning that it is not a straight

through muon; the vertex must lie well downstream of the �rst counter; and the

muon must �re two s-bits out of last four counters and be recorded in both of the
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�rst two gaps in the toroid. If the muon does not penetrate to the second gap, it

must �re two s-bits in counters from 9 to 12 (counter 1 is the closest to the toroid).

3.3 Calibration Beam

In order to translate scintillation counter response into actual energy the calibra-

tion beam is used. The idea is to send particles of known energies into the detector

and to map the detector response to the energy. The calibration beam delivered

beams of hadrons, electrons and muons of known energy over the range 5-200

GeV [29]. The layout is shown on Fig.3.5. The set-up allows one to distinguish

between di�erent types of particles, to select particles of a particular energy, and

to measure each particle's momentum vector. Calibration beam information is

used to tune the simulated detector response. The procedure for tuning muon and

hadron energies is discussed later.
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Figure 3.3: Schematic diagram of beam timing structure
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Trigger Name Requirements

1 Charged Current Trigger

� counters on upstream of washer 1

� counters on in both toroid gaps

� no upstream veto

2 Neutral Current Trigger

� Ehad > 5 GeV in 8 consecutive counters

� Ehad > 0:15 GeV in 2 out of 4 consecu-

tive counters

� no upstream veto

3 Range-Out/Exit Trigger

� 1/4 MIP in each of 16 non-consecutive

counters

� 4 GeV energy in any 8 adjacent counters

� no upstream veto

4 Charged Current Trigger II

� shower energy

� hits in �rst cart upstream of toroid

� muon track through one toroid quad-

rant

5 Test Beam Trigger � slow spill

6 Straight through � Trigger
� hits in each cart and one toroid quad-

rant

8 Cosmic Ray Trigger � 40 counter muon requirement

10,11,12 Pedestal Triggers � No other triggers

Table 3.1: NuTeV trigger list with descriptions
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Chapter 4

The Dimuon Data Sample

NuTeV collected almost four million events with a detector signature consistent

with a charged-current event. Various selection criteria (cuts) are applied to the

data to remove improperly reconstructed events, overlayed or multiple events, back-

ground events, and other anomalies. Charged-current cuts identify single muon

events. To select dimuon events out of all charged-current events, additional cuts

on the second muon are applied. Since data is going to be compared with Monte

Carlo simulation, cuts also are designed to remove events that cannot be prop-

erly simulated. This chapter describes the charged-current data and dimuon data

selection criteria.

4.1 Charged-current Data Selection

The charged-current event is easily recognized by the localized deposition of hadronic

energy accompanied by an outgoing muon track or tracks. Various cuts are applied

to ensure that the event has occurred in time with the neutrino beam (fast gate),

is well inside the �ducial volume of the detector, is properly reconstructed by the

detector, and can be simulated by the Monte Carlo. The following cuts are used

to select charged-current events:
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1. The event must occur in coincidence with the beam (fast gate) and �re the

charged current trigger.

2. The incident neutrino energy, E� , must be greater than 20 GeV and the

energy of the hadronic shower, Ehad, greater than 10 GeV.

3. In order to ensure event containment, only events occurring within an ac-

tive �ducial volume are accepted: the transverse vertex positions (Vx; Vy)

must satisfy �127 cm< Vx;y < 127 cm and
q
V 2
x + V 2

y < 152:4 cm, while

the longitudinal vertex position must lie between counters 20 and 80, which

corresponds to 2:7 and 17:7 hadronic interaction lengths from the upstream

and downstream ends of the calorimeter, respectively.

4. The time obtained from �tting the primary muon track must be within 36

ns of the trigger time.

5. The muon must be toroid-analyzed with muon energy on the front face of the

detector E�ff > 3 GeV.

6. The muon must pass through at least 2=3 of the toroid.

7. The muon must hit the front face of the toroid inside a circle of radius RFF <

152 cm, and more than 80% of the path length of the muon must be in the

toroid steel.

8. Finally, in order to remove mis-reconstructed events, a requirement is imposed

on the reconstructed xvis kinematic variable: 0 � xvis � 1.

4.2 Dimuon Data Selection

A typical dimuon event is shown in Fig.1.5. In this �gure, the toroid can be seen

to focus the leading muon originating from the leptonic vertex and to de-focus the

secondary muon which originates most probably from charm decay. In the event

shown in the �gure, both muons pass through the toroid, and both of their signs
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are determined. For events where the sign of one muon is not measured, it is

assumed to be the opposite of the one measured. Since the charge of the primary

muon is always known, the measurement of the sign of only one muon is suÆcient

to identify the primary and secondary muons in the event. The rate of the same

sign dimuon events with both muons toroid-analyzed is very low [28]. Cuts used

to select the dimuon sample consist of the following:

1. The event must occur in coincidence with the fast gate and �re the charged

current trigger.

2. The incident neutrino energy must be greater than 20 GeV and the energy

of the hadronic shower, Ehad, greater than 10 GeV.

3. In order to ensure event containment, only events occurring within an active

�ducial volume are accepted: the transverse vertex position (Vx; Vy) must

satisfy �127 cm< Vx;y < 127 cm and
q
V 2
x + V 2

y < 152:4 cm, while the

longitudinal vertex position must lie between counters 15 and 81, which cor-

responds to 2:7 and 13:3 hadronic interaction lengths from the upstream and

downstream ends of the calorimeter, respectively. The place requirement

is relaxed compared to the charged current cut in order to gain statistics.

Dimuon events tend to have smaller hadronic energy, so the shower is still

well-contained in the detector.

4. Two muons must be identi�ed in the event and satisfy the following criteria:

� The energy of both muons, E�1;�2 must be greater than 5 GeV.

� The time obtained from �tting each track must be within 36 ns of the

trigger time.

� One of the muons must be toroid-analyzed. The energy of the primary

muon at the entrance of the toroid greater than 5 GeV.

� At least one toroid-analyzed muon must pass through at least 2=3 of the

toroid.
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� The toroid-analyzed muons must hit the front face of the toroid inside a

circle of radius RFF < 152 cm, and more than 80% of the path length

of the muon must be in the toroid steel.

5. Finally, in order to remove mis-reconstructed events, a requirement is imposed

on the reconstructed xvis kinematic variable: 0 � xvis � 1.

The �nal dimuon event sample contains 5102 �� induced and 1458 �� induced

events. Of these, 2280=655 in ��=�� mode have both muons reconstructed in the

toroid spectrometer. All other events have only one. The mean Evis of the events

is 157:8 GeV, the mean Q2
vis = 21:1 GeV2 and the mean xvis = 0:14. The overall

reconstruction eÆciency, including detector acceptance, is � 60% for events with

E�2 � 5 GeV, and � 80% when E�2 is above 30 GeV, as shown on Fig.4.1
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Figure 4.1: Total reconstruction eÆciency as a function of second muon generated energy.
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Chapter 5

Monte Carlo Simulation

In neutrino-nucleon scattering many stochastic processes are involved both in the

basic physics and in the response of the detector. It is impossible to describe

observed processes by simple analytical formulas. Instead, a detailed simulation of

the NuTeV experiment is performed using the Monte Carlo (MC) technique. The

�rst part of Monte Carlo simulation involves generation of an event's kinematics

according to a speci�c physical model. The second part is the propagation of

the single muon or dimuon events through the detector. The end result of the

MC simulation is a set of events that look like real data events. A �t can then

be performed of MC sample to the data by varying physics model parameters.

The MC sample must be statistically superior to the real data sample to ensure

numerical accuracy.

In this analysis, two di�erent Monte Carlo samples are used. A single muon MC

sample is used to correct for the neutrino 
ux and to normalize the dimuon rate

to the total charged current rate. The generation begins with randomly selecting

(throwing) values for kinematic variables that determine the charged current cross

section. Next, another random number is thrown in the range between zero and

the maximum value the cross section can have. If this number is less than the cross

section value (from Eq.2.12) for the already selected kinematics, then we keep the
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Figure 5.1: Radiative correction diagrams. A) Boson loop correction. B) Boson radiation

from �nal state quark. C) Box diagram.

event. Otherwise, the event is discarded. The dimuon MC sample is used in a �t to

the dimuon data to extract model parameters sensitive to charm production. The

dimuon MC sample is generated separately from charged current sample. Each

MC event is assigned a weight that is the ratio of dimuon cross-section to charged

current cross-section.

Weight =
�2�(E� ; x; q

2)

�1�(E� ; x; q2)
: (5.1)

The �tting procedure then operationally consists of varying the weight.

5.1 Detector Simulation

A hit-level Monte Carlo simulation of the detector based on the GEANT pack-

age [30] was used to model the detector response and provide an accurate repre-

sentation of the detector geometry. Monte Carlo events were analyzed using the

same reconstruction software used in the data analysis. The detector response in

the simulation was tuned to both hadron and muon test beam data at various

energies. To ensure accurate modeling of the muon reconstruction eÆciency, the

drift chamber eÆciencies were measured in the data as a function of time and

implemented in the simulation.

Primary neutrino interactions were generated using the LO QCD model and
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fragmentation function described more fully in Sec. 6.1. The cross section model

in Eq.2.12 does not account for electroweak radiation processes: loop corrections

to the boson propagation, 
=Z0=W� radiation from the �nal state quark, and

the 
 radiation from the primary vertex muon (Fig.5.1). Electroweak radiative

corrections based on the model by Bardin [31] were applied to this cross-section.

The main background to charm arises from ordinary CC interactions in which a

pion or kaon produced in the hadronic shower decays muonically.This was simu-

lated following a parameterization of hadron test beam muon-production data for

simulating secondary decays, and the LEPTO [32] package for the decays of pri-

mary hadrons [33]. The total probability to produce such muons with momentum

greater than 4 GeV/c is � 2 � 10�4 for events with Ehad � 30 GeV, and � 10�3

for Ehad � 100 GeV. The contribution from the primary hadron decays is roughly

two times larger than that from the secondary decays.

To make sure that the detector response is properly simulated the calibration

beam data is used to correct for apparent muon and hadron energy biases, or

\pulls". Since the true energy of each muon or hadron is measured separately

one should look at the detector response by measuring energy of a particle by

the detector and comparing it to the true value. The same response should be

observed in Monte Carlo simulation of the calibration beam. To correct for an

apparent muon energy pull the procedure described below is used.

In order to make sure that the detector energy response is properly simulated a

calibration beam (test beam (TB)) of muons for a particular energy Egen is selected

and for each event the ratio of the reconstructed energy Erec to the generated energy

of the muon. The result is an asymmetric Gaussian distribution with the mean

Meantb and width Widthtb. NuTeV collected muon and hadron calibration beam

over a wide range of energies. By using all calibration beam energies functions

Meantb(Egen) and Widthtb(Egen) are measured. Monte Carlo simulation are then

used to calculate similar functions Meanmc and Widthmc. If mean and width

MC functions do not agree with those obtained for the test beam over some Egen
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Figure 5.2: TheMean (left) and theWidth (right) of Gaussian �ts (Fig.5.5) as functions

of the generated hadron energy both for the test beam and Monte Carlo. The darker

curves represent the test beam.
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Figure 5.4: Mean and Width distributions from Fig.5.3 after corrections.

range then a correction for a reconstructed energy (calibration function) is found to

enforce the agreement. The same procedure is used to tune the detector response

for hadrons. Calibration curves for the mean and the width as a function of energy

are shown on Figs.5.2-5.3.

Figures 5.2-5.3 show that the calibration corrections are non-unity for muons

and hadrons. The calibration function shifts reconstructed energy by as little

as possible to force the Monte Carlo Gaussian to lie on top of calibration beam

Gaussian. It turns out that it is possible to adjust the mean and the width simul-

taneously by using

E
0

rec = Egen

"
(
Widthtb
Widthmc

(
Erec

Egen

�Meanmc) +Meantb)

#
: (5.2)

The result of applying the energy corrections is shown on Fig.5.4. As a result of

changing the reconstructed energy in the Monte Carlo according to formula 5.2,

MC points move to the calibration beam curves. Figure 5.5 shows the e�ect of

applying formula 5.2 to the Gaussian for the case of two di�erent hadron energies.
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Figure 5.5: Gaussian �ts to the reconstructed (Erec) energy over generated (Egen) energy

distribution for one of the hadron TB and MC runs.

It is important to notice that the shape of the distribution stays close to the original

one.

For the hadron calibration, the exact form of the distributions on Fig.5.2 is

Mean = d(�0 + (1:� �0)=c);

W idth = 1:=(a� x+ b) + c;

�0 = 1� (x=a)b;

The coeÆcients a, b, c, and d are summarized in Table 5.1. Similarly, for muons:

f = (1:� 1:=(1:+ exp((x�m)=w)));

Mean = f + c0(a0 + b0x)=(1:+ exp((x�m)=w));

W idth = f + c0(a0 + b0x)=(1:+ exp((x�m)=w));

and coeÆcients a0, b0, c0, and d0 are given in Table 5.2.

For Monte Carlo hadron shower generation a very simple 3 pion model is used.

The total generated energy is divided equally between �+, ��, and �0. Charged

pions constitute the hadronic part of the hadron shower, while �0 are responsible

for electromagnetic part of the hadron shower. The hadron test beam for NuTeV

always had ��s, so the correction described above takes care only of one part of
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Mean a b c d

Data 8.91881468 -0.338007016 1.15470893 1.05159627

MC 9.74683905 -0.627438616 1.30525602 1.032245

Width a b c d

Data 0.19817455 3.25553521 0.0411955189 0

MC 0.118763552 3.683011 0.0402142124 0

Table 5.1: CoeÆcients for Mean (top two rows) and Width hadronic energy distribu-

tions.

Mean a b c m w

Data 0.983556751 0.000189849841 0.99127606 41 2

MC 1.01734759 -0.000436031151 0.989042201 66 2

Width a b c m w

Data 0.116241194 -0.000733062922 0.0944287782 34 2

MC 0.149244577 -0.00146297376 0.108360651 22 2

Table 5.2: CoeÆcients for Mean (top two rows) and Width muon energy distributions.

the hadron shower. Another correction is applied in order to correct the fraction

of a hadron energy that goes into electromagnetic part since the response of the

detector to electromagnetic showers is measured to be � 8% higher than that for

hadronic shower [29]. Figure 5.6 shows the amount of a correction that is applied.

This study relies heavily on the LUND [17] prediction. The NuTeV Monte Carlo

curve is described by the formula

f(x) = 34862� 16998 � x� 18244 � x2;

and the Lund curve is

f(x) = 48423� 79213 � x+ 30774 � x2;

where x is the ratio of electromagnetic part of the shower to the total shower

energy.
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5.2 Neutrino Flux and Normalization

The total 
ux, energy spectra, and composition for both neutrino and anti-neutrino

beams are calculated using a Monte Carlo simulation of the beamline based on

the DECAY TURTLE program [34] and production data from Atherton [35] as

parameterized by Malensek [36] for thick targets. This 
ux is used to generate an

inclusive charged-current interaction Monte Carlo sample using the GEANT based

hit level detector Monte Carlo described in section 5.1.

The predicted 
ux is then tuned so that the inclusive charged-current interac-

tion spectra in the Monte Carlo match the data. Selection criteria for this sample of

inclusive charged-current interactions are exactly the same as those used to select

the dimuon sample with the requirement for 2 muons removed. Flux corrections

of up to 15% are applied in bins of neutrino energy and transverse vertex position

to force the single muon data and Monte Carlo to agree. In addition, an overall

factor is determined for each beam (neutrino or anti-neutrino) that absolutely nor-

malizes the single muon Monte Carlo to the data. The dimuon Monte Carlo uses

the 
ux determined with the above procedure; and it is absolutely normalized to

the inclusive single muon charged-current data through the 
ux tuning procedure.

The procedure used to tune the 
ux to the observed single muon rate is iterative

since the event rate observed in the detector depends on the convolution of cross

section with neutrino 
ux, and the result of the charm measurement has a small

e�ect on the total cross-section. Corrections found from the single muon Monte

Carlo/data comparisons are incorporated into the dimuon Monte Carlo that is used

to determine the dimuon cross-section, and thus the charm production cross-section

within our LO model. The charm cross-section results are then used in the single

muon Monte Carlo, and the procedure is repeated until the 
ux parameters do not

change (in practice the convergence is very fast). Figure 5.7 shows a comparison

between data and Monte Carlo for the single muon (
ux) sample; the level of

agreement is very good.
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Figure 5.7: Top - total muon energy of the primary and secondary muons. Middle -

muon energies at the front face of the toroid. Bottom - hadronic energy. � mode is on

the left, �� mode is on the right. �2 per total number of degrees freedom is listed for each

distribution. Pluses are data, histograms - Monte Carlo
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Figure 5.8: Top - visible neutrino energy. Middle - vertex distribution in x transverse

plane. Bottom - vertex distributions in y transverse plane. � mode is on the left, �� mode

is on the right. �2 per total number of degrees freedom is listed for each distribution.

Pluses are data, histograms - Monte Carlo
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Chapter 6

Dimuon Analysis Results

Dimuon data yield information about charm production models, charm quark frag-

mentation process, and the semi-muonic charm particle inclusive branching ratio

decay Bc. In an ideal situation one would like to present direct measurements

of the di�erential charm production cross sections d��(��)Nc =dxdy at several di�er-

ent neutrino energies. NuTeV and its predecessor CCFR do not measure charm,

but rather dimuons. The charm cross section is thus extracted from the data by

model-dependent corrections for charm fragmentation and decay and by experi-

mental e�ects of resolution, acceptance, and neutrino 
ux. One way of handling

these issues is to �t a parametric model directly to the data and extract parameters

from the model. This approach was used in the past for LO-QCD[22, 23, 24, 25]

and NLO-QCD in the variable 
avor ACOT[9] scheme[21].

6.1 General Fit Procedure

The approach taken here begins with the same idea, a LO-QCD parametric �t

based on the following equation for dimuon production cross section:

d3�(��N ! ���+X)

d� dy dz
=

d2�(��N ! cX)

d� dy
D(z) Bc(c! �+X); (6.1)

46



where �rst part on the right-hand side is the LO charm production cross section,

second term is the fragmentation function, and the third term is the semi-muonic

inclusive charmed hadron branching ratio. The expression 6.1 formally introduces

the notion that, in LO QCD, the dimuon production cross section can be factored

into three parts: production, fragmentation, and decay. The charm production

cross section in LO QCD is(
d2�(��N ! cX)

d� dy

)
LO

=
G2
FME�

�(1 +Q2=M2
W )2

 
1� m2

c

2ME��

!
� (6.2)

f [�u(�; �2) + �d(�; �2)] jVcdj2 + 2�s(�; �2) jVcsj2 g;

where � = x
�
1 + m2

c

Q2

� �
1� x2M2

Q2

�
is a slow rescaling variable, with the second mul-

tiplicative taking into account target mass e�ects. Formulas 6.1 and 6.3 establish

the set of physical parameters that can be measured by �tting dimuon Monte Carlo

to the data. Parameters of interest are: the charm quark massmc, the semi-muonic

branching ratio Bc, and the strange and anti-strange PDFs. It is also possible to

obtain the parameter � that de�nes the Collins-Spiller fragmentation function [26]:

D(z; �) = [(1� z)=z + �(2� z)=(1� z)] (1 + z)2[1� (1=z)� �=(1� z)]�2: (6.3)

The fragmentation function describes the process in which produced charm quark

(anti-quark) combines with a light anti-quark (quark) that is either present in the

nucleon target or produced in the scattering process. z is the ratio of momentum

carried by D-meson to the total initial momentum of the charm quark. Imagine

that there is a string attached between charm quark and anti-quark. Part of the

initial energy of charm will be transferred into stretching the string (QCD color

�eld energy), resulting in lower D-meson momentum. The Peterson fragmentation

function [27] was also tried in the �t but produced worse agreement between MC

and data.

Events passing selection criteria detailed in the previous chapter are binned

separately in �� and ��� mode in the quantities

Evis = E�1 + E�2 + EHAD;

47



Figure 6.1: 3D bin in Evis, xvis, and zvis phase space. Crosses denote data, and points

represent Monte Carlo events.

xvis =
4E�1 (E�1 + E�2 + EHAD) sin

2 ��1
2M (E�2 + EHAD)

;

zvis =
E�2

E�2 + EHAD
;

where E�1 is the energy of the primary muon with the same lepton number as the

beam, E�2 is the energy of the other muon, EHAD is the observed hadronic energy

in the calorimeter, and ��1 is the scattering angle of the primary muon. The \vis"

subscript indicates that these quantities di�er from the true values of x, E, and

z due to the energy carried away by the neutrino from charm decay and due to

detector smearing. Other quantities of interest for comparison purposes are

yvis =
E�2 + EHAD

E�1 + E�2 + EHAD
;

Q2
vis = 2MEvisxvisyvis:

The phase space is binned in a 3-dimensional (3D) array of Evis, xvis, and zvis as

shown in Fig.6.1.

In each mode there are 7 bins in Evis, 9 bins in xvis, and and 6 bins in zvis. The

�t is performed by minimizing the negative log-likelihood function

= =
allbinsX

i

(�Di logMCi +MCi); (6.4)

48



where Di is the number of data events in a particular bin, and MCi is the number

of Monte Carlo events in the same bin. This is just the negative log of the joint

Poisson probability of bins in the data being described by the model in question.

The low Evis region is sensitive to the charm quark mass. Since the c quark has

signi�cant mass, the energy transferred to the struck quark in order to produce

charm must be above the charm quark mass threshold. Bjorken xvis distributions in

both modes determine the strange and anti-strange PDFs; and the zvis distribution

is sensitive to fragmentation and therefor measures the function parameter �.

A binned likelihood �t is performed that compares the data to a model com-

posed of a charm source described by Eqs. 6.1 and 6.3. The charm events are

augmented with a contribution from dimuon production through �=K decay in the

charged-current neutrino interaction's hadron shower and then processed through

a detailed Monte Carlo (MC) simulation of the detector and the same event re-

construction software used for the data. The MC dimuon sample is normalized to

the data through use of the inclusive single muon event rates in �� and ��� modes.

The �t varies a common charm mass mc, branching fraction Bc, and fragmenta-

tion parameter � for both modes, and two parameters for each mode, (�� ; ��) and

(���; ���), that describe the magnitude and shape of the s and �s quark PDF. The

strange sea parameters are de�ned by

s
�
x;Q2

�
= ��

�u (x;Q2) + �d (x;Q2)

2
(1� x)�� ; (6.5)

�s
�
x;Q2

�
= ���

�u (x;Q2) + �d (x;Q2)

2
(1� x)��� ; (6.6)

This parameterization di�ers slightly in the general case of ��; ��� 6= 0 from previous

LO analyses in the de�nition of ��; ���. The motivation for not using the older

de�nitions (of the form

s (x;Q2) = ��
2

�
�u (x;Q2) + �d (x;Q2)

�
(1� x)�� �

R 1
0
dx(�u(x;Q2)+�d(x;Q2))R 1

0
dx(�u(x;Q2)+ �d(x;Q2))(1�x)��

) is to

avoid a procedure that requires information about PDF outside the experimentally

accessible x range of the experiment. In these parameterizations values of �� =

��� = 1 and �� = ��� = 0 would imply an SU(3)-
avor symmetric sea; previous
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model mc

�
GeV =c2

�
� Bc (%) �2=DOF

BGPAR 1:33� 0:19� 0:10 2:07� 0:31� 0:64 11:40� 1:08� 1:15 105=112

GRV 1:65� 0:18� 0:09 2:09� 0:31� 0:64 11:11� 1:51� 1:60 101=112

CTEQ 1:63� 0:17� 0:09 2:07� 0:31� 0:63 10:70� 1:66� 1:76 100=112

Table 6.1: Results of LO �ts to NuTeV data. The �rst error is statistical, the second

systematic. On the far right is the �2 per degree of freedom.

measurements have yielded � values in the range of 0:4 and � values consistent

with zero within large errors. By using strange sea parameterization 6.6, the

implicit assumption is made that the strange sea follows the non-strange sea q2

QCD evolution.

6.2 NuTeV Leading Order QCD �ts

The LO QCD �ts were performed using three di�erent choices of u and d-quark

parton distribution function (PDF) sets with their corresponding QCD evolution

kernels: GRV94LO [37] and CTEQ4LO[38] , as implemented in the PDF compila-

tion PDFLIB [39], and a Buras-Gaemers parameterization[40] (BGPAR) that has

been used extensively in this experiment and its CCFR predecessor. In the BG-

PAR case, an explicit Callan-Gross relation violation is implemented by replacing

the term 1� m2
c

2ME��
in equation 6.3 with (1+RL)(1+ (2M�

Q
)2)�1(1� y� Mxy

2E
)+ xy

�
,

where RL, the ratio of longitudinal to transverse W�N cross sections, is taken

from a �t to electro-production data[41]. Tables 6.1 and 6.1 list �t results with the

rightmost column in Table 6.1 showing the combined �2 for � and �� modes. All

three models have the same good level of agreement with the dimuon data. Figure

6.2 illustrates the quality of �ts by comparing the BGPAR model �t and the data

is shown for the kinematic variables used directly in the �t. Figures 6.3 and 6.4

show a comparison for variables not used directly in the �ts.

By using the � and � parameters in formula 6.5, one obtains strange and

anti-strange seas for each model that are shown in Fig.6.5. Error bars take into
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model � �� � ��

BGPAR 0:32� 0:06� 0:04 0:37� 0:05� 0:04 �1:10� 1:05� 0:59 �2:78� 0:42� 0:40

GRV 0:37� 0:05� 0:03 0:37� 0:06� 0:06 0:87� 1:25� 0:71 0:28� 0:44� 0:42

CTEQ 0:44� 0:06� 0:04 0:45� 0:08� 0:07 1:17� 1:20� 0:68 1:08� 0:44� 0:41

Table 6.2: Results of LO �ts to NuTeV data. The �rst error is statistical, the second

systematic.

account full correlations between model parameters. Figure 6.6 shows the strange

sea versus anti-strange sea for three di�erent models. In each case the strange sea

agrees with anti-strange sea within the errors.

One observes that a di�erence in choice of PDF parameterization result in

di�erent charm production parameters, indicating signi�cant model dependence

at LO. We would like to provide a way for the rest of physics community to be

able to compare to our measures dimuon production cross-section. Just quoting

results in the form that they appear in the Tables 6.1-6.2 would require knowledge

of many choices that are made in this particular calculation, such as PDF set

used, Vcd and Vcs matrix elements, etc. Because of the above arguments, the most

relevant quantity to extract is the dimuon production cross section. The NuTeV

experiment has approximately the same statistical dimuon sample as the CCFR

experiment. Extracting cross-section tables for each of the experiments is the most

straightforward way to combine this data.

6.3 Systematic Errors

Although the main thrust of the analysis is the extraction of the dimuon production

cross-section, the various sources of systematic uncertainty are presented by listing

their contributions to the LO �t parameters. This is done for reasons of clarity,

since the individual systematic uncertainty contributions add too many entries

in the cross-section tables, and it is completely equivalent since the systematic

uncertainty on the parameters of the LO �ts propagates directly to the cross-
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mc

�
GeV =c2

�
� Bc (%) � �� � ��

� �=K(15%) 0:022 0:51 0:81 0:018 0:031 0:01 0:05

�� �=K(21%) 0:006 0:13 0:06 0:001 0:017 0:01 0:17

RL(20%) 0:037 0:09 0:17 0:001 0:010 0:48 0:26

� energy scale (1%) 0:080 0:33 0:74 0:036 0:023 0:25 0:24

Hadron energy scale (0:4%) 0:012 0:08 0:02 0:005 0:003 0:01 0:04

MC statistics 0:047 0:02 0:31 0:012 0:006 0:23 0:01

Flux 0:010 0:01 0:07 0:001 0:000 0:03 0:03

Systematic Error 0:104 0:64 1:15 0:043 0:043 0:59 0:40

Table 6.3: Systematic error sources for LO-QCD �t to NuTeV data.

section measurement.

The main sources of the systematic uncertainties arise from modeling uncer-

tainties in the Monte Carlo. The most signi�cant are the �=K decay background

simulation, the detector calibration from the analysis of test beam hadron and

muon data as a functions of energy and position, and the overall normalization.

In addition, in the case of the BGPAR �ts, the uncertainty on the longitudinal

structure function is important.

Systematic errors are summarized in Table 6.3. The main sources are:

1. uncertainties in �=K background for neutrinos and anti-neutrinos;

2. an RL systematic error due to the uncertainty in the longitudinal cross-section

calculation;

3. calibration uncertainties of muon and hadron energies;

4. the limited statics of the Monte Carlo sample used in the �t;

5. uncertainties in the neutrino and anti-neutrino 
ux used in the Monte Carlo

simulation.

To demonstrate that the background is estimated correctly, a study of same sign

dimuons is performed. These events can only come from charged current events
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with a � or K decaying into same sign muon as the primary one. Production

could occur if b quarks were produced in charged current interactions, but the

rate is too small to see [28]. To look at these events the additional requirement

that both muons must go through two gaps in the toroid so that both signs are

determined is imposed. Figure 6.13 shows the NuTeV toroid-toroid dimuon sample.

Secondary muons from background are lower energy than muons resulting from

charm production. As a result only a few reach the second gap in the toroid.

The same sign dimuon sample is shown on Fig.6.14. Most events are �=K decays.

Events from charm sources end up in the same sign sample because the sign of

the second muon can be misreconstructed by the toroid. Notice that Monte Carlo

describes the data well, meaning that the only signi�cant e�ect of the second muon

charge misreconstruction is the reduced statistics in the dimuon analysis sample.

The number of actual background events is 270 out of 442 in � mode and 52 out

of 101 in �� mode in the same sign sample. The number of background events in

opposite sign dimuon sample is 195 out of 2320 in � mode and 35 out of 669 in

�� mode. Because of charge misidenti�cation of the second muon, 45.7 events leak

from the opposite sign into same sign sample in � mode, while only 7.9 leak the

opposite way. In the �� mode, these numbers are 8.6 and 1.9.

The total number of dimuon events generated as a result of � interaction that

end up reconstructed in the �� sample is 1:4 � 10�4. The number of dimuons

generated in �� mode and misreconstructed to belong to the � sample is 0:1�10�4.

The total number of same sign events with the sign opposite to the polarity of the

toroid is zero both in the data and the Monte Carlo. Out of all dimuon events

that pass all but charge id cuts, 91:6% pass charge id cuts in � mode and 92:9% in

�� mode. The total reconstruction eÆciency is 67:8% in � mode and 67:9% for ��s.
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Figure 6.2: NuTeV x, z, and E distributions for dimuons. Neutrino mode is on the

left, anti-neutrino mode is on the right. Crosses represent the data. Circles represent

strange sea contribution, stars - d quark contribution, and boxes - �K background. The

histogram is the sum of all model contributions. �2 for total degrees of freedom is shown

for each plot.
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Figure 6.3: NuTeV inelasticity y, W boson momentum Q2, and the opening angle be-

tween two muons distributions for dimuons. Neutrino mode is on the left, anti-neutrino

mode is on the right. Crosses represent the data. Circles represent strange sea contri-

bution, stars - d quark contribution, and boxes - �K background. The histogram is the

sum of all model contributions. �2 for total degrees of freedom is shown for each plot.
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Figure 6.4: NuTeV energy of the �rst muon, energy of the second muon, and the hadronic

energy distributions for dimuons. Neutrino mode is on the left, anti-neutrino mode is on

the right. Crosses represent the data. Circles represent strange sea contribution, stars

- d quark contribution, and boxes - �K background. The histogram is the sum of all

model contributions. �2 for total degrees of freedom is shown for each plot.
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Figure 6.5: NuTeV strange (top) sea and anti-strange (bottom) sea as functions of

Bjorken x for Q2 = 16 GeV2. Hatched - BGPAR model. The solid lines bound GRV �t

region, dashed lines - CTEQ.
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Figure 6.6: NuTeV strange sea (hatched) vs. anti-strange sea (dashed) for Q2 = 16

GeV2. Top - BGPAR model, middle - GRV, and bottom - CTEQ.
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6.4 Leading Order Fits To CCFR Data

The CCFR experiment is a predecessor of NuTeV. NuTeV used essentially the same

detector as CCFR, but CCFR did not have a sign-selected beam to distinguish

between events that originate from neutrino interactions from events that are the

result of anti-neutrinos interactions they had to rely heavily on a \Pt algorithm".

The algorithm exploits the fact that in dimuon event the secondary muon has a

lower transverse momentum with respect to the hadron shower than the primary

muon. Use of this algorithm meant that CCFR data had a substantially higher

fraction of �� events misreconstructed as ��� and vise-versa. This was especially

true for the ��� sample. CCFR had a beam of higher energy than NuTeV. The

dimuon data statistics from both experiments are almost the same. Description of

CCFR experiment can be found in Refs. [22] and [21].

We reanalyzed CCFR data in the same manner as NuTeV data. The results

of the �t using three di�erent cross-section models are shown in Tables 6.4-6.5.

Strange and anti-strange seas are shown in Figs.6.7-6.9.

model mc

�
GeV =c2

�
� Bc (%) �2=DOF

BGPAR 1:20� 0:23� 0:12 0:88� 0:12� 0:04 11:43� 0:95� 0:40 138=112

GRV 1:65� 0:18� 0:10 0:88� 0:11� 0:04 11:55� 1:17� 0:49 137=112

CTEQ 1:54� 0:19� 0:10 0:90� 0:12� 0:04 11:16� 1:22� 0:51 136=112

Table 6.4: Results of LO �ts to CCFR data. The �rst error is statistical, the second

systematic. The far right column shows �2 per degree of freedom

model � �� � ��

BGPAR 0:32� 0:06� 0:04 0:37� 0:05� 0:04 �1:10� 1:05� 0:59 �2:78� 0:42� 0:40

GRV 0:37� 0:05� 0:03 0:37� 0:06� 0:06 0:87� 1:25� 0:71 0:28� 0:44� 0:42

CTEQ 0:44� 0:06� 0:04 0:45� 0:08� 0:07 1:17� 1:20� 0:68 1:08� 0:44� 0:41

Table 6.5: Results of LO �ts to CCFR data. The �rst error is statistical, the second

systematic.

As in the case of NuTeV, CCFR leading order �ts to di�erent models yield
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di�erent model parameters while describing the data equally well. Strange and

anti-strange sea are shown on Fig.6.10. The strange sea versus anti-strange sea is

shown on Fig.6.11 for each of the three models. In each case, the strange sea agrees

with anti-strange sea within errors. Finally, Fig.6.12 compares NuTeV strange sea

with CCFR strange sea. Systematic errors estimates for the CCFR experiment are

taken from previous work [22], since access to that experiment data and MC was

limited.

One notices that the fragmentation function parameter is very di�erent between

NuTeV and CCFR. It is explained by the fact that in NuTeV analysis more low

energy second muons are accepted in order to obtain statistically signi�cant data

sample. Figure 6.15 shows NuTeV zvis distributions for the full dimuon sample

and for toroid-toroid events. Only muons with high enough energies reach the

toroid, therefor the toroid- toroid sample has very di�erent zvis form. The shape

di�erence is shown on Fig.6.16. Also there are much fewer background events,

8:6% in � mode and 5:3% in �� mode, because �=K decays normally produce low

energy muons. The �t to the toroid-toroid sample produces � = 1:27 � 0:23, the

value that is consistent with CCFR. The shape di�erence in zvis between NuTeV

and CCFR (Fig.6.17) looks very much like the shape di�erence between NuTeV

full sample and NuTeV toroid-toroid sample. Notice that Monte Carlo mimics

data very well. The statistical error on � from the toroid-toroid �t is smaller than

the statistical error from full �t, even though the toroid-toroid sample has much

fewer events. Summarizing, in NuTeV analysis a lot of low energy muons are

accepted which leads to increase in fragmentation function parameter �. That also

leads to decreased sensitivity to the fragmentation function which results in bigger

errors on �. The third e�ect is a larger background contribution, and thus, bigger

systematic error assigned to �.
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6.5 Vcd Matrix Element

In the high x region of neutrino data most of the charm production comes from

the d quark. The total dimuon rate is thus proportional to V 2
cd � Bc. In the cross

section calculation code the Vcd value is �xed, and the �t varies Bc. This can be

converted into the measurement of Vcdas

V 2
cd = V ext

cd
2 � Bext

c =Bc; (6.7)

where ext stands for the value that is estimated from external sources and used in

the Monte Carlo. The external value for the matrix element is obtained from the

matrix unitarity assumption and is equal to

V ext
cd = 0:2205

with a negligible error. The branching ratio is estimated to be [19]

Bext
c = (9:3� 0:9)%:

Combining these two with the branching ratio measured by NuTeV

Bc = (11:4� 1:08� 1:15)%;

the Vcd evaluates to

Vcd = 0:244� 0:017� 0:017:

The CCFR experiment measured the matrix element to be [21]

V CCFR
cd = 0:232� 0:019;

but they used an old value for Bext
c ([9:9� 1:2]% vs. [9:3� 0:9]%). With new Bext

c ,

the Vcd matrix element measured by CCFR becomes

V CCFR
cd = 0:239� 0:013� 0:015:

The NuTeV measurement is consistent with the previous one, and both are higher

than, but consistent with, the unitarity prediction. Combining NuTeV and CCFR

results, this thesis quotes the most precise measurement of Vcd:

Vcd = 0:242� 0:011� 0:017:
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Further improvement requires a better measurement of Bext
c .

6.6 The high x region

This section presents a supplementary investigation of the high x region (x > 0:5).

The objective of this study is to ascertain whether there is any indication of an

enhancement in the cross-section that we may be missing due to our use of wide

x bins (dictated by the low observed event rate at high x). Such an enhance-

ment could be caused by an unusually large strange sea, particularly in neutrino

mode, which has been advocated to resolve certain discrepancies between inclusive

charged lepton and neutrino scattering [14]. Previous dimuon analyses [21, 22]

may have missed this e�ect due to dependence on the particular model used to

parameterize the strange sea distribution.

In order to minimize model-dependent corrections, we report our high x cross-

section measurements as fractions of the total dimuon cross-section. Similarly,

to quote a limit for the x > 0:5 cross-section we use the observed data rate for

xV IS > 0:5. This is a conservative way to set a limit, since by the kinematic e�ect

of the missing decay neutrino energy, the contribution to a given xV IS bin always

comes from x < xV IS.

The cross-section ratio of the dimuon cross-section for x > 0:5 to the total

dimuon cross-section in a given energy bin can be expressed as

�2�x>0:5
�2�

=
Nx>0:5

Ntot

M

ME>5
; (6.8)

where Nx>0:5 is the number of observed events for xV IS > 0:5, Ntot is the total

number of observed dimuon events, and M is the Monte Carlo prediction with all

experimental cuts applied, and ME>5 is the Monte Carlo prediction without the

�=K decay contribution and with only the E�2 > 5 GeV cut applied. For this

study, we use the same data selection criteria described in Section 4, except for

the xV IS selection, which is changed to: 0 � xV IS � 2.
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EVIS Nx>0:5 MC N�=k N�s Ntot
M

Me>5

34.8-128.6 1 3.4 2.1 1.3 688 0.67

128.6-207.6 4 3.4 1.9 1.5 528 0.75

207.6-388.0 2 3.4 2.1 1.3 238 0.78

Table 6.6: High-x events using the anti-neutrino data sample. EV IS is in GeV, Nx>0:5

is the number of observed events for xV IS > 0:5, MC is the Monte Carlo prediction for

xV IS > 0:5, N�=k and N�s are the �=K decay and �s contributions to MC, Ntot is the

total number of dimuon events, and M
Me>5

is the Monte Carlo correction in Eq. 6.8

.

EVIS Nx>0:5 MC N�=k Ns Ntot
M

Me>5

36.1-153.9 65 53.39 11.6 2.0 2304 0.64

153.9-214.1 42 53.44 14.8 1.8 1598 0.75

214.1-399.5 60 53.38 17.4 2.2 1201 0.78

Table 6.7: High-x events using the neutrino data sample. EV IS is in GeV, Nx>0:5 is

the number of observed events for xV IS > 0:5, MC is the Monte Carlo prediction for

xV IS > 0:5, N�=k and Ns are the �=K decay and s contributions to MC, Ntot is the

total number of dimuon events, and M
Me>5

is the Monte Carlo correction in Eq. 6.8.

In the anti-neutrino dimuon data sample we de�ne three energy bins and record

the number of the observed dimuon events with xV IS > 0:5 in the data for each

bin, together with the Monte Carlo prediction and all the relevant information for

Eq. 6.8. Here the Monte Carlo prediction is very well constrained by our dimuon

data in the full x range, since the observed rate is mostly due to scattering on �s

quarks. The results are presented in Table 6.6. Systematic and statistical errors on

the Monte Carlo prediction are negligible for this discussion. Treating the Monte

Carlo prediction as a \background," and using Eq. 6.8, we set cross-section ratio

upper limits at 90% CL, for any additional source of x > 0:5 dimuons, of 0.0012,

0.007, and 0.009, respectively, in each of the energy bins de�ned in Table 6.6

(counting from lower to higher energy bin).
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We follow the same procedure in the neutrino data sample. Here, there is

an additional complication in the interpretation of the result since a substantial

contribution from valence quark events is expected. The Monte Carlo prediction

for the rates of the non-strange sea component is not directly constrained by our

dimuon data, but rather by inclusive structure function measurements. The results

are presented in Table 6.7. It is worth noticing that within the model and PDF sets

used in this analysis (BGPAR) the Monte Carlo prediction for the contribution of

the strange sea is only on the order of 3.7% of the total rate for xV IS > 0:5; most

of the contribution (69%) in this model comes from the valence quarks.

Using Eq. 6.8 and treating the Monte Carlo prediction as a \background"

source, we set 90% CL limits for an additional cross-section source at x > 0:5.

We �nd that for the �rst and last energy bins in Table 6.7 this additional source

cannot be larger than 0.006 and 0.013 of the total dimuon cross-section, while for

the 153.9-214.1 bin there is less than 5% probability that there is an additional

source consistent with our data. The result is quoted this way because we have a

1.75� negative yield compared to our background prediction.
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Figure 6.7: CCFR x, z, and E distributions for dimuons. Neutrino mode is on the

left, anti-neutrino mode is on the right. Crosses represent the data. Circles represent

strange sea contribution, stars - d quark contribution, and boxes - �K background. The

histogram is the sum of all model contributions. �2 for total degrees of freedom is shown

for each plot.
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Figure 6.8: CCFR inelasticity y, W boson momentum Q2, and the opening angle between

two muons distributions for dimuons. Neutrino mode is on the left, anti-neutrino mode

is on the right. Crosses represent the data. Circles represent strange sea contribution,

stars - d quark contribution, and boxes - �K background. The histogram is the sum of

all model contributions. �2 for total degrees of freedom is shown for each plot.
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Figure 6.9: CCFR energy of the �rst muon, energy of the second muon, and the hadronic

energy distributions for dimuons. Neutrino mode is on the left, anti-neutrino mode is on

the right. Crosses represent the data. Circles represent strange sea contribution, stars

- d quark contribution, and boxes - �K background. The histogram is the sum of all

model contributions. �2 for total degrees of freedom is shown for each plot.
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Figure 6.10: CCFR strange (top) sea and anti-strange (bottom) sea as functions of

Bjorken x for Q2 = 16 GeV2. Hatched - BGPAR model. The solid lines bound GRV �t

region, dashed lines - CTEQ.
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Figure 6.11: CCFR strange sea (hatched) vs. anti-strange sea (dashed) for Q2 = 16

GeV2. Top - BGPAR model, middle - GRV, and bottom - CTEQ.

69



Figure 6.12: NuTeV strange sea (hatched) vs. CCFR strange sea (solid) for Q2 = 16

GeV2, BGPAR model. Top - neutrino mode, bottom - anti-neutrino mode
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Figure 6.13: NuTeV x toroid-toroid distribution. Neutrino mode is on the top, anti-

neutrino mode is on the bottom. Crosses represent the data. Circles represent strange sea

contribution, stars - d quark contribution, and boxes - �K background. The histogram

is the sum of all model contributions. �2 for total degrees of freedom is shown for each

plot.
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Figure 6.14: NuTeV same sign dimuons, toroid-toroid sample. Neutrino mode is on the

top, anti-neutrino mode is on the bottom. Crosses represent the data. Circles represent

strange sea contribution, stars - d quark contribution, and boxes - �K background. The

histogram is the sum of all model contributions. �2 for total degrees of freedom is shown

for each plot.
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Figure 6.15: NuTeV zvis distributions. Top - full sample, Bottom - only toroid-toroid

events. �s are on the left, ��s are on the right.
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Figure 6.16: NuTeV zvis distributions. Left - full sample vs. only toroid-toroid events.

Right - the ratio of the histograms on the left side. Top - � mode, bottom - �� mode.
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Figure 6.17: NuTeV and CCFR zvis distributions. Top - NuTeV vs. CCFR. Bottom -

the ratio of the histograms on the left side.
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Figure 6.18: Fragmentation function for di�erent �s. The higher the �, the more the

function's peak is shifted to the left. Histogram represents NuTeV full sample, and

crosses - NuTeV toroid-toroid sample.
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Chapter 7

Dimuon Cross-Section Tables

As shown in the previous section, charm cross-section parameters depend on the

details of the charm production model used in the �t. In addition, a fragmentation

and decay model must be used to extract the charm production cross-section from

the observed dimuon rate, introducing further model dependences. These model

dependencies are exacerbated by the experimental smearing correction, due to the

missing neutrino energy of the charmed hadron decay and the detector resolution,

and the substantial acceptance correction for low energy muons. In order to mini-

mize model dependencies, we choose to present our result in the form of a dimuon

production cross-section.

It was shown in the previous chapter that we can obtain very good description

of our dimuon data, independent of the charm production model assumptions in

our Monte Carlo. We thus limit the use of the Monte Carlo to correct experimental

e�ects to the measured dimuon rate, and we limit the measurement of this rate

to regions of phase space where the acceptance of the experiment is high. In this

case, the only model dependence comes from potential smearing e�ects close to

our acceptance cuts, i.e., the uncertainty on production of events produced with

kinematic variables outside our cuts that smeared to reconstructed values within

the cuts. The prediction for this kind of smearing depends on the underlying
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physics model, which is not well constrained by our data, since it involves phase

space not accessed by our data. However, this model dependence is a second order

e�ect.

The dimuon cross-section extraction procedure depends on the ability of our

Monte Carlo to describe the data. The \true" three-dimensional phase space

(x; y; E) is divided into a number of bins. The grid of bins is set up so that

there is the same number of Monte Carlo events in each bin for any projection

into one dimension. The cross-section for dimuon production with E�2 � 5 GeV is

calculated according to Eq. 7.2 at the center of gravity of each bin. The size of the

bins in \visible" phase space (xvis; yvis; Evis) is de�ned in such a way so that there

is a correspondence between a visible bin ji and a generated i established by the

condition that bin ji contains at least 60% of the events from bin i. The relative

error on the cross-section is taken to be proportional to Æ�2=�2� = �2�=
q
D (ji),

with an adjustment factor added to take into account systematic errors. Cross-

section tables were produced using BGPAR, GRV, and CTEQ models; Fig.7.4-7.4

demonstrate the insensitivity of the cross-section to PDF choice. Further details

of the binning procedure are de�ned in Section 7.2.

7.1 Dimuon Cross-Section

The analysis proceeds based on the observation that the dimuon data is well de-

scribed by the LO �t. Whether the LO �t parameters have any useful meaning

is, in fact, not of great importance; our goal is to use the �t parameters to help

construct a cross-section. This task is performed by forming a grid of x; y; and E

in the generated space. The dimuon cross- section is computed at the weighted

center of each (x; y; E)i bin i as

d2���(��N ! ���+X)

dx dy
(x; y; E)i =

Di

MC 0
iLOfit

Z
E�2>E�2min

dzd
� (7.1)

(
d3���(��N ! ���+X)

dx dy dz

)
(x;y;E)i�LOfit

:
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In this expression the left hand side represents the measured cross-section for

dimuon production as a function of x, y, and E in bin i with the requirement

that the second muon in the event exceeds the threshold used in the experiment,

E�2 > E�2min. On the right hand side, Di is the number of data events in bin i that

has to be evaluated from Monte Carlo, N 0
iLOfit is the number of events predicted

in bin i by the LO �t. In the integrand d3���(��N ! ���+X)=dx dy dz is from

equation 6.1 and the integral over the fragmentation variable z and charmed hadron

decay variables 
 maintains the condition E�2 > E�2min. The end result is two

tables, one each for �� and ��� mode, of the \forward" dimuon cross-section, which

is closest to what the experiment actually measures. It will be shown later that

these tables can be used to re-extract the LO �t parameters and can be combined

with similar tables from the CCFR experiment.

7.2 Data Unfolding

The integral on the right-hand side of equation 7.2 represents the leading order

dimuon cross-section calculation using LO parameters that are obtained by �tting

Monte Carlo to data. Figures A.1 show the calculated cross-section curves using

three di�erent di�erent models. All curves lie close to each other which supports

the claim that since best-�t Monte Carlo describes data equally well for all models

the calculated cross-section in each case should be the same. The problem with

just publishing these theoretical curves is that any physical measurement involves

measuring central value as well as the error. Theoretical curves in our case repre-

sent just the central values with no errors attached to them. Another danger in

just publishing these curves is that one might end up making the prediction in the

region outside the phase space covered by the experiment.

In this analysis we report the di�erential cross-sections

d2�
�
��=���Fe! ����X

�
=dxdy

for forward secondary muons tabulated in bins of neutrino energy E, Bjorken
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scaling variable x, and inelasticity y. The measurement is obtained by using a

LO Monte Carlo �t to the data to �nd the correspondence (mapping) between

the \true" (unsmeared) and reconstructed (smeared) phase space, as discussed in

previous section. This procedure maps the statistical 
uctuations of the observed

event rate to the \true" phase space bins where the cross-section is reported. The

consistency of the procedure is checked by comparing �ts of various models to the

extracted cross-section tables to �ts of the same models performed directly to the

data. The criterion for the check is that the obtained central values and the errors

on the model parameters are the same in both cases. In order to meet these criteria

the binning of the smeared and the unsmeared phase space has to be appropriately

selected.

Usually in cross-section measurements, the procedure followed is to bin both

the \true" and the reconstructed variables using the same grid, and select the bin

size empirically so that for each bin the purity is maximized and the smearing

contribution from other bins is minimized. Purity is de�ned here as the fraction of

events which have both their unsmeared and smeared variables belonging to the

same bin. In such a method the correspondence between smeared and unsmeared

bins is trivial since the same grid of bins is used. In the case of the dimuon cross-

section measurement, a complication arises from the large smearing e�ects due

to the missing neutrino energy in the reconstructed dimuon �nal state. Unlike

detector resolution e�ects, this smearing is not a symmetric function of the \true,"

unsmeared variables, but rather an asymmetric mapping similar to an electroweak

radiative correction. Because of this e�ect, we have followed a more elaborate

procedure to map the visible phase space bins to those of the \true" phase space.

This procedure allows us to obtain the desired high purity for each bin and also

achieve stability of the result independently of the binning choice. In addition

to mapping, our procedure allows us to take into account the signi�cant bin-to-

bin correlations which arise from the large smearing corrections without having to

construct a full error matrix. This correlation matrix can be calculated, but it is

too unwieldy to be useful. It is also diÆcult to incorporate e�ects of correlated
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systematic errors in a meaningful way. In our treatment, we estimate an e�ective

number of degrees of freedom which allows us to obtain from an uncorrelated �t

to the cross-section tables the same �t parameter errors as the ones obtained by

directly �tting to the data, using the usual ��2 = 1 de�nition.

We begin the description of the technique by de�ning more precisely the factors

Di and N 0
i;LOfit from Eq. 7.2. In this equation, the expression on the left hand

side represents the measured cross-section for dimuon production as a function of

x, y, and E in bin i of the true phase space (with the requirement E�2 > E�2min).

On the right hand side, Di is the number of data events in bin i (which has to

be determined using the Monte Carlo mapping procedure), and N 0
i;LOfit is the

number of events predicted in bin i by the LO �t. To estimate the number of

data events associated with bin i, we start by selecting bins in generated phase

space (x; y; E)i, requiring equal number of Monte Carlo events in each projection

of the true (generated) phase space, so the number of events in each (x; y; E)i

bin is approximately the same. The visible phase space is divided using the same

algorithm but with a much �ner grid than used in generated space. The mapping

matrixMij makes the correspondence between visible and generated phase spaces:

Mij = Nij=Nj;

where Nij is the number of Monte Carlo events generated in bin i which end up

in visible bin j and Nj is the total number of Monte Carlo events in visible bin j.

The coverage fraction C in visible space is de�ned as

C =
N(C)X
j

Nij=Ni; (7.2)

where Ni is the number of Monte Carlo events in generated bin i. In the case of

C = 1 the sum is performed over all visible bins; otherwise, the summation goes

over the bins with the highest Nij=Ni ratios until the desired fractional coverage

is obtained. Using the above de�nitions, and for a given coverage C, we can de�ne

the number of data events which belong to a given true phase space bin i (where
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the cross-section is reported) as

Di =
X
j2C

Mij �Dj: (7.3)

The number of Monte Carlo events in this generated bin, for a given coverage C,
is rede�ned as

N 0
i =

X
j2C

MijNj: (7.4)

The cross-section error for each bin i should be proportional to the visible events

\mapped" in that bin, so the following expression is used to assign it:

Æi =
d2���(��N ! ���+X)i

dx dy
=
q
Ni: (7.5)

Note that the Monte Carlo statistics contribution comes from the total number of

Monte Carlo events generated in bin i. The multiplicative factor Di=N 0
i in Eq. 7.2

cancels out to �rst order the model dependence of the extracted cross-section and

approximately transfers the statistical 
uctuation in the visible phase space to the

true phase space.

The procedure as described above is incomplete, since the true bins i are not

statistically independent. As we stated in the introduction to this section, we do

not calculate the full error matrix, but rather estimate an e�ective (independent)

number of degrees of freedom. It is possible to estimate the number of independent

degrees of freedom by calculating the contribution to the total number of degrees

of freedom from each bin

DOFi =

P
i2CMijNiP
j2CNj

: (7.6)

It is obvious that the e�ective number of degrees of freedom depends on the selected

coverage fraction C, and should decrease as C increases. Figure 7.1 shows the

number of e�ective degrees of freedom (DOF) as a function of the coverage area

C (solid curve). The dotted curve in Fig. 7.1 shows the �2 obtained as a result of

the �t to the table. We conclude that our method produces the correct number

for �2=DOF , if the e�ective number of degrees of freedom is used, for a coverage

fraction between 55% and 90%.
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The coverage area percentage used for our reported cross-section result is based

on a Monte Carlo study. In this study a Monte Carlo sample is used to produce

\cross-section" tables and then �ts are performed to the tables and directly to the

sample. Using as guidelines the criteria that there should be no pull on �t param-

eters in a �t to the cross-section table versus a direct �t, and that an uncorrelated

�t to the tables should yield the same �t parameter errors as the ones obtained by

a direct �t, we selected a coverage area C = 60%. The e�ective number of degrees

of freedom which corresponds to this value should be used with all �ts performed

on the cross-section tables presented in this thesis.

7.3 Using The Table

Using the cross-section tables involves similar steps as used in the direct data

analysis, but with all detector and 
ux dependent e�ects removed. One must

provide a model for charm production, fragmentation, and decay; construct the

dimuon cross-section number for each entry in the table; and perform a �2 �t. The

�2 function should employ the statistical and systematic errors in each bin added

in quadrature.

One must also account for correlations between the various table entries. These

correlations derive from our use of the LO �t to parameterize the data and from our

method of binning; they are an inherent consequence of the incomplete kinematic

reconstruction of the dimuon �nal state. We have adopted a pragmatic approach

towards handling this issue. Rather than compute a large correlation matrix,

we in
ate the cross-section errors in each bin by a factor that is typically 1:4:

This factor is chosen so that an uncorrelated �2 �t to the tables returns the same

parameter errors as a direct �t to the data.

We tested this �tting procedure on the tables using the same BGPAR, frag-

mentation, and decay models used to obtain the table; Table 7.1 summarizes this

study. Both the parameter values and their uncertainties obtained from �tting
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to the cross-section table agree with the corresponding values obtained by �tting

directly to the data. It has also been veri�ed that GRV94 parameters, for example,

can be extracted from a cross-section table constructed with either the CTEQ or

BGPAR model so as to agree with parameters obtained by �tting directly to the

data.

While our cross-checks in �tting the cross-section tables entail using the same

physics model used in generating the tables, we emphasize that the table presents a

set of physical observable which may be used to test any dimuon production model.

For the most interesting case of dimuon production through charm, a typical model

test would consist of the following steps 1:

� For each bin, generate a (large) ensemble of NGEN events with x, y, and ~pc,

where ~pc denotes the lab momentum of the produced charm quark, according

to the model charm production di�erential cross-section d�c�mod=dx dy d~pc

� Fragment the charm quarks into hadrons and decay the charmed hadrons

(using, for example, PYTHIA), and determine NPASS the number of events

which have a charm decay muon with E�2 � 5 GeV.

� The cross-section to compare to the table value is then d����mod=dx dy =

(NPASS=NGEN)� R d~pc d�c�mod=dx dy d~pc.

� A �t should then be performed to minimize

�2 =
X

table�bins

�
d2����mod=dx dy � d2�+���data=dx dy

�2
�2stat + �2syst

(7.7)

in each beammode with respect to the desired parameters in d�c�mod=dx dy d~pc:

� The con�dence level for the �t may be obtained by comparing the �2 to the

sum of e�ective DOF for table bins used in the �t.
1A simple PYTHIA implementation of the �rst three steps may be obtained at www-e815.fnal.gov,

or by contacting the authors.
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Figure 7.1: DOF and �2 as a function of coverage area

To provide further experimental information for model testing, the following

kinematic quantities are given along with the cross-section in each bin: hEHADi,
the mean visible hadronic energy; hE�2i, the mean energy of the secondary muon;

hp2T2ini, the mean square of the secondary muon's transverse momentum in the

event scattering plane; andhp2T2outi, the mean square of the secondary muons trans-
verse momentum perpendicular to the event scattering plane. These quantities are

computed from the dimuon data, with the LO �t used only for acceptance and

smearing corrections. Tables A.1-A.12 contain the measurements2.

Summarizing, one can use the cross-section table to test model predictions.

The �2 can be constructed assuming point to be statistically independent. The �t

will produce the �2 that should be compared to the number of degrees of freedom

that we provide.

2These data may also be obtained electronically at www-e815.fnal.gov.
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SET mc

�
GeV =c2

�
Bc (%) � �� � ��

NuTeV 1:30� 0:22 10:22� 1:11 0:38� 0:08 0:39� 0:06 �2:07� 0:96 �2:42� 0:45

CCFR 1:56� 0:24 12:08� 0:99 0:28� 0:05 0:33� 0:05 3:85� 1:17 3:30� 0:83

NuTeV+ 1:40� 0:16 11:00� 0:71 0:36� 0:05 0:38� 0:04 �1:12� 0:73 �2:07� 0:39

Table 7.1: Results of LO �ts to the cross-section tables extracted from the NuTeV,

CCFR, and combined data sets.

7.4 Validation of Cross Section Tables

A study using fake data is performed in order to ensure that the �t procedure is

unbiased and to show that the cross section table construction does not introduce

further signi�cant biases. Forty fake data samples were generated using LO BG-

PAR cross section parameters that were obtained from the �t to the real data. The

�t is performed to each of those fake data samples. Figure 7.2 shows the result.

The solid line represents the parameter used to produce the fake data sample. The

result of the �t to this sample is denoted by the point with errorbar (40 total). The

dashed line is the avarage over all 40 fake data sample. There are no signi�cant

pulls in any of the parameters. At the end of each �t to the fake sample the cross

section table is constructed and the �2 �t is performed to this table. The result

is shown on Fig.7.3. The �t to the table produces very high correlation between

semi-muonic branching ratio and strange (anti-strange) size parameter. In reality

one would �x the branching ratio to the world avarage. In this case there is no

additional bias introduced in the tables.
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Figure 7.2: Pulls. Solid line - input parameter, dashed - avarage over fake data �ts,

crosses - errors on input parameters, squares - avarage error on fake data parameters.

Points with errorbars represent the result of the �t to each fake data sample.
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squares - avarage error on input parameters (same as in Fig.7.2). Points with errorbars

represent the average over all �ts to the fake data tables. The result is shown as the

function of the coverage area for each of the parameters.
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Figure 7.4: �2�(x) from NuTeV neutrinos, for various E� � y bins in units of charged-

current �. The cross-section extracted using the BGPAR model in the Monte Carlo is

shown in squares, the circles correspond to extraction using the CTEQ model, and the

triangles to the GRV model. The curves show the model prediction for GRV (dashed),

CTEQ (dotted), and BGPAR (solid) after the models have been �t to the data.
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Figure 7.5: �2�(x) from NuTeV anti-neutrinos, for various E��y bins in units of charged-

current �. The cross-section extracted using the BGPAR model in the Monte Carlo is

shown in squares, the circles correspond to extraction using the CTEQ model, and the

triangles to the GRV model. The curves show the model prediction for GRV (dashed),

CTEQ (dotted), and BGPAR (solid) after the models have been �t to the data.
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Figure 7.6: �2�(x) from CCFR neutrinos, for various E� � y bins in units of charged-

current �. The cross-section extracted using the BGPAR model in the Monte Carlo is

shown in squares, the circles correspond to extraction using the CTEQ model, and the

triangles to the GRV model. The curves show the model prediction for GRV (dashed),

CTEQ (dotted), and BGPAR (solid) after the models have been �t to the data.
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Figure 7.7: �2�(x) from CCFR anti-neutrinos, for various E��y bins in units of charged-

current �. The cross-section extracted using the BGPAR model in the Monte Carlo is

shown in squares, the circles correspond to extraction using the CTEQ model, and the

triangles to the GRV model. The curves show the model prediction for GRV (dashed),

CTEQ (dotted), and BGPAR (solid) after the models have been �t to the data.
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Chapter 8

Summary

This thesis presents for the �rst time a measurement of the dimuon production

cross-section from an analysis of the data of the NuTeV neutrino DIS experiment

at the Tevatron. NuTeV data are combined with an earlier measurement from the

CCFR experiment that used the same detector but a di�erent beamline. A leading

order QCD analysis of charm production performed on the combined data yields

the smallest errors to date on model parameters describing the charm mass, the

size and shape of the strange sea, and the mean semi-muonic branching fraction

of charm. The leading order QCD model describes NuTeV and CCFR data very

well, but charm production model parameters extracted vary depending on the

particular choice of model. The extracted dimuon production cross-section, by

contrast, is insensitive to the choice of leading order QCD model and should be of

most use to the community of phenomenologists. In LO QCD, all models predict

strange (anti-strange) sea to be � 40% of non-strange sea. There is no strange

- anti-strange asymmetry in x region accessible by our data. NuTeV directly

measures Vcd matrix element to be

Vcd = 0:244� 0:017� 0:017:
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This is in good agreement with previous CCFR measurement. Combining NuTeV

Vcd with CCFR, we present the most precise measurement of

Vcd = 0:242� 0:011� 0:017:

This thesis provides all necessary information to make predictions about potential

strange - anti-strange sea asymmetry in high x region.

Future neutrino studies at MUon RIng Neutrino Experiment (MURINE) [42]

will be much cleaner theoretically due to much superior statistics available and due

to improvements in the detector. A muon collider at the center-of-mass energies

between 100-1000 TeV would produce a neutrino beam to study deep inelastic

scattering processes with center-of-mass energies of 300-1000 GeV. A neutrino

beam from the muon storage ring would be several orders of magnitude more

intense than NuTeV's or CCFR's beams. Neutrinos would be produced as the

result of muon decays, emanating tangentially out the muon ring in a very focused

beam. Therefor, the target can be very small, and a silicon detector can be used

to tag the charm hadron by its lifetime. This makes the charm production analysis

much easier since there is no need for fragmentation and decay model assumptions.
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Appendix A

Cross Section Tables

�2 x y
d�(��N!���+X)

dxdy
j+ hEHADi



E�+

� D
p2
T�+in

E D
p2
T�+out

E
0:64 0:021 0:334 0:419� 0:071� 0:003 18:3� 1:0 7:9� 0:5 0:40� 0:55 0:14� 0:24

0:45 0:058 0:334 0:538� 0:090� 0:022 18:6� 1:2 9:0� 0:6 1:08� 1:14 0:76� 1:49

0:44 0:102 0:334 0:427� 0:069� 0:007 17:9� 1:2 8:3� 0:7 1:19� 0:78 0:26� 0:48

0:46 0:168 0:334 0:323� 0:049� 0:008 18:7� 1:2 8:2� 0:5 0:74� 0:28 0:14� 0:25

0:67 0:324 0:334 0:132� 0:019� 0:003 19:4� 0:9 8:5� 0:4 0:95� 0:09 0:07� 0:04

0:64 0:021 0:573 0:774� 0:107� 0:015 36:3� 1:4 10:9� 0:8 0:19� 0:09 0:09� 0:03

0:46 0:058 0:573 0:808� 0:108� 0:027 34:3� 1:5 10:9� 0:7 0:29� 0:14 0:11� 0:07

0:47 0:102 0:573 0:792� 0:103� 0:012 36:5� 1:5 10:0� 0:6 1:08� 0:97 0:44� 0:96

0:50 0:168 0:573 0:471� 0:060� 0:017 34:8� 1:6 10:6� 0:7 0:85� 0:72 0:25� 0:43

0:62 0:324 0:573 0:198� 0:027� 0:003 34:6� 1:6 11:1� 0:7 0:75� 0:11 0:07� 0:03

0:58 0:021 0:790 0:795� 0:126� 0:096 49:6� 3:0 14:6� 1:4 0:26� 0:35 0:10� 0:05

0:43 0:058 0:790 0:894� 0:133� 0:029 52:8� 2:5 13:5� 1:5 0:34� 0:35 0:24� 0:44

0:41 0:102 0:790 0:826� 0:123� 0:027 52:1� 2:5 11:2� 1:0 0:24� 0:21 0:09� 0:08

0:52 0:168 0:790 0:706� 0:108� 0:005 53:0� 2:5 12:6� 1:2 0:30� 0:15 0:10� 0:08

0:58 0:324 0:790 0:210� 0:038� 0:004 49:0� 2:9 12:8� 1:2 0:52� 0:18 0:09� 0:04

Table A.1: NuTeV forward di�erential cross-section for ��N ! ���+X at E � 90:18

GeV. The forward cross-section requires E�+ � 5 GeV, and the cross-section values

should be multiplied by 1
100 � G2

FME=�. The �rst error given for the cross-sections is

statistical and the second systematic. Units are in GeV or GeV2, where appropriate, for

the averages of the kinematic quantities.
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�2 x y
d�(��N!���+X)

dxdy
j+ hEHADi



E�+

� D
p2
T�+in

E D
p2
T�+out

E
0:66 0:021 0:334 1:013� 0:148� 0:022 39:1� 1:8 12:1� 1:0 0:57� 1:32 0:24� 0:49

0:45 0:058 0:334 0:837� 0:127� 0:018 39:6� 2:1 12:2� 1:1 0:33� 0:09 0:09� 0:04

0:40 0:102 0:334 0:737� 0:111� 0:009 39:8� 2:3 12:2� 1:1 0:57� 0:17 0:08� 0:03

0:39 0:168 0:334 0:484� 0:071� 0:010 38:4� 2:2 11:3� 0:9 0:69� 0:15 0:11� 0:10

0:57 0:324 0:334 0:212� 0:028� 0:005 39:4� 1:8 12:7� 0:8 1:44� 0:20 0:08� 0:03

0:57 0:021 0:573 1:304� 0:196� 0:015 69:0� 2:3 18:1� 1:8 0:19� 0:07 0:11� 0:06

0:43 0:058 0:573 1:161� 0:176� 0:021 71:0� 2:5 16:7� 1:5 0:25� 0:08 0:08� 0:04

0:35 0:102 0:573 1:140� 0:178� 0:019 72:9� 3:2 19:2� 2:1 0:63� 0:24 0:26� 0:78

0:42 0:168 0:573 0:685� 0:107� 0:007 75:0� 3:2 14:8� 1:6 1:35� 1:26 0:15� 0:27

0:52 0:324 0:573 0:242� 0:038� 0:004 76:8� 3:3 13:6� 1:6 0:74� 0:24 0:07� 0:04

0:43 0:021 0:790 1:267� 0:179� 0:025 101:8� 3:6 22:0� 2:8 0:20� 0:09 0:11� 0:05

0:34 0:058 0:790 1:301� 0:176� 0:031 101:5� 3:2 21:1� 2:4 0:29� 0:11 0:09� 0:04

0:32 0:102 0:790 1:072� 0:153� 0:023 98:7� 3:6 21:9� 3:1 0:37� 0:17 0:09� 0:05

0:37 0:168 0:790 0:788� 0:118� 0:020 101:9� 4:3 20:4� 3:3 0:72� 0:65 0:09� 0:06

0:41 0:324 0:790 0:251� 0:040� 0:005 100:4� 4:2 20:2� 3:1 0:69� 0:40 0:08� 0:07

Table A.2: NuTeV forward di�erential cross-section for ��N ! ���+X at E � 174:37

GeV. The forward cross-section requires E�+ � 5 GeV, and the cross-section values

should be multiplied by 1
100 � G2

FME=�. The �rst error given for the cross-sections is

statistical and the second systematic. Units are in GeV or GeV2, where appropriate, for

the averages of the kinematic quantities.
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�2 x y
d�(��N!���+X)

dxdy
j+ hEHADi



E�+

� D
p2
T�+in

E D
p2
T�+out

E
0:79 0:021 0:334 1:154� 0:167� 0:015 54:7� 2:9 15:1� 1:5 0:82� 1:29 0:09� 0:05

0:54 0:058 0:334 1:306� 0:196� 0:034 59:2� 3:1 14:2� 1:3 0:31� 0:10 0:29� 0:40

0:46 0:102 0:334 0:913� 0:132� 0:017 61:1� 4:5 13:2� 1:6 0:40� 0:11 0:11� 0:14

0:41 0:168 0:334 0:712� 0:103� 0:013 65:6� 3:3 14:1� 1:4 0:82� 0:18 0:09� 0:03

0:63 0:324 0:334 0:278� 0:036� 0:003 69:7� 3:5 13:8� 1:2 1:29� 0:30 0:11� 0:10

0:68 0:021 0:573 1:487� 0:234� 0:010 97:7� 3:8 20:1� 3:0 0:19� 0:09 0:14� 0:16

0:47 0:058 0:573 1:419� 0:235� 0:016 105:7� 3:9 19:7� 2:6 0:84� 0:98 0:10� 0:09

0:46 0:102 0:573 1:018� 0:166� 0:011 105:5� 6:1 21:2� 3:9 0:85� 0:62 0:13� 0:52

0:42 0:168 0:573 0:700� 0:116� 0:005 108:1� 4:9 17:5� 3:4 0:78� 0:34 0:10� 0:07

0:60 0:324 0:573 0:294� 0:046� 0:003 109:6� 4:5 18:6� 2:7 0:86� 0:27 0:08� 0:04

0:56 0:021 0:790 1:656� 0:222� 0:060 148:9� 4:9 22:6� 3:3 0:19� 0:11 0:16� 0:20

0:43 0:058 0:790 1:546� 0:216� 0:013 144:3� 5:5 27:6� 4:5 0:40� 0:20 0:13� 0:17

0:40 0:102 0:790 1:211� 0:174� 0:046 149:9� 7:2 25:4� 4:4 1:25� 1:19 0:26� 0:51

0:36 0:168 0:790 0:968� 0:141� 0:011 150:4� 6:9 22:2� 3:5 0:52� 0:32 0:48� 1:98

0:37 0:324 0:790 0:311� 0:047� 0:005 154:6� 6:3 19:2� 3:6 0:50� 0:26 0:07� 0:04

Table A.3: NuTeV forward di�erential cross-section for ��N ! ���+X at E � 244:72

GeV. The forward cross-section requires E�+ � 5 GeV, and the cross-section values

should be multiplied by 1
100 � G2

FME=�. The �rst error given for the cross-sections is

statistical and the second systematic. Units are in GeV or GeV2, where appropriate, for

the averages of the kinematic quantities.
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�2 x y
d�(���N!�+��X)

dxdy
j+ hEHADi



E��

� D
p2
T��in

E D
p2
T��out

E
0:61 0:016 0:356 0:403� 0:101� 0:004 16:9� 1:3 7:5� 0:8 0:11� 0:07 0:06� 0:06

0:39 0:044 0:356 0:393� 0:101� 0:019 15:9� 1:9 8:2� 1:0 1:34� 1:80 0:59� 1:57

0:34 0:075 0:356 0:417� 0:107� 0:007 16:5� 1:6 7:9� 1:1 0:42� 0:33 0:11� 0:13

0:37 0:117 0:356 0:275� 0:067� 0:025 16:5� 1:5 8:4� 0:7 0:37� 0:19 0:12� 0:13

0:63 0:211 0:356 0:080� 0:018� 0:003 18:5� 1:9 8:0� 0:9 0:74� 0:23 0:08� 0:06

0:61 0:016 0:586 0:463� 0:097� 0:030 30:5� 2:2 13:0� 1:9 0:19� 0:09 0:05� 0:04

0:39 0:044 0:586 0:533� 0:110� 0:007 31:1� 2:5 10:3� 1:4 0:17� 0:08 0:11� 0:05

0:42 0:075 0:586 0:621� 0:125� 0:026 33:5� 2:2 10:7� 1:4 0:32� 0:17 0:05� 0:05

0:44 0:117 0:586 0:357� 0:071� 0:008 31:5� 2:4 11:1� 1:3 0:35� 0:13 0:09� 0:06

0:63 0:211 0:586 0:183� 0:036� 0:003 32:2� 2:3 10:7� 1:2 0:94� 0:39 0:07� 0:04

0:53 0:016 0:788 0:623� 0:161� 0:009 43:7� 3:8 12:1� 1:6 0:14� 0:13 0:13� 0:20

0:39 0:044 0:788 0:623� 0:154� 0:016 44:8� 4:3 10:1� 1:8 0:10� 0:08 0:04� 0:03

0:42 0:075 0:788 0:520� 0:124� 0:004 43:4� 3:7 13:4� 3:3 0:19� 0:11 0:10� 0:09

0:41 0:117 0:788 0:399� 0:098� 0:016 41:1� 5:2 11:9� 2:7 0:30� 0:21 0:09� 0:10

0:64 0:211 0:788 0:153� 0:039� 0:004 46:8� 5:1 10:0� 2:4 0:30� 0:26 0:07� 0:06

Table A.4: NuTeV forward di�erential cross-section for ���N ! �+��X at E � 78:97

GeV. The forward cross-section requires E�� � 5 GeV, and the cross-section values

should be multiplied by G2
FME=�. The �rst error given for the cross-sections is statis-

tical and the second systematic. Units are in GeV or GeV2, where appropriate, for the

averages of the kinematic quantities.
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�2 x y
d�(���N!�+��X)

dxdy
j+ hEHADi



E��

� D
p2
T��in

E D
p2
T��out

E
0:68 0:016 0:356 0:793� 0:171� 0:017 32:7� 2:5 12:7� 2:0 0:50� 0:62 0:78� 1:84

0:42 0:044 0:356 0:744� 0:172� 0:024 36:0� 3:3 12:2� 2:0 0:23� 0:12 0:08� 0:06

0:37 0:075 0:356 0:752� 0:174� 0:013 33:5� 2:9 11:2� 1:6 0:33� 0:11 0:21� 0:36

0:38 0:117 0:356 0:427� 0:097� 0:009 36:7� 3:7 10:2� 1:4 0:73� 0:27 0:07� 0:06

0:56 0:211 0:356 0:140� 0:030� 0:003 38:4� 4:1 8:8� 0:8 0:61� 0:22 0:06� 0:05

0:53 0:016 0:586 1:338� 0:317� 0:025 58:5� 3:0 16:4� 2:2 0:09� 0:07 0:07� 0:04

0:37 0:044 0:586 0:930� 0:223� 0:048 66:3� 4:4 13:2� 2:5 0:12� 0:09 0:09� 0:12

0:36 0:075 0:586 0:744� 0:173� 0:017 60:1� 4:5 16:7� 2:5 0:27� 0:13 0:08� 0:08

0:34 0:117 0:586 0:653� 0:159� 0:005 64:0� 3:9 14:7� 2:9 0:38� 0:18 0:08� 0:07

0:50 0:211 0:586 0:257� 0:063� 0:006 59:8� 4:6 14:4� 3:2 0:69� 0:32 0:05� 0:04

0:46 0:016 0:788 0:915� 0:198� 0:013 82:9� 5:1 18:0� 3:4 0:12� 0:09 0:09� 0:14

0:37 0:044 0:788 1:106� 0:240� 0:042 84:3� 6:4 22:0� 4:1 0:30� 0:18 0:09� 0:07

0:33 0:075 0:788 0:775� 0:172� 0:041 87:2� 5:8 18:4� 4:6 0:23� 0:31 0:07� 0:05

0:36 0:117 0:788 0:547� 0:121� 0:015 88:1� 6:5 15:7� 4:6 0:17� 0:11 0:06� 0:06

0:44 0:211 0:788 0:297� 0:075� 0:004 78:7� 5:6 17:3� 3:6 0:31� 0:13 0:07� 0:04

Table A.5: NuTeV forward di�erential cross-section for ���N ! �+��X at E � 146:06

GeV. The forward cross-section requires E�� � 5 GeV, and the cross-section values

should be multiplied by G2
FME=�. The �rst error given for the cross-sections is statis-

tical and the second systematic. Units are in GeV or GeV2, where appropriate, for the

averages of the kinematic quantities.
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�2 x y
d�(���N!�+��X)

dxdy
j+ hEHADi



E��

� D
p2
T��in

E D
p2
T��out

E
0:80 0:016 0:356 1:046� 0:228� 0:015 53:2� 3:3 14:3� 2:4 0:16� 0:10 0:10� 0:05

0:51 0:044 0:356 1:133� 0:254� 0:017 54:9� 4:4 15:9� 2:4 0:37� 0:23 0:08� 0:04

0:41 0:075 0:356 0:855� 0:195� 0:010 57:2� 6:4 16:2� 3:5 0:52� 0:19 0:09� 0:07

0:44 0:117 0:356 0:426� 0:094� 0:030 57:0� 7:0 13:6� 2:8 0:58� 0:37 0:07� 0:05

0:60 0:211 0:356 0:331� 0:070� 0:029 61:8� 6:9 11:8� 2:6 1:47� 0:92 0:08� 0:04

0:60 0:016 0:586 1:459� 0:380� 0:012 95:0� 6:7 17:2� 3:3 0:14� 0:11 0:04� 0:04

0:45 0:044 0:586 1:111� 0:281� 0:011 95:0� 5:4 19:5� 3:9 0:27� 0:21 0:07� 0:05

0:41 0:075 0:586 0:998� 0:253� 0:037 89:2� 7:4 25:3� 5:2 0:39� 0:22 0:15� 0:16

0:42 0:117 0:586 0:787� 0:202� 0:011 97:8� 10:3 24:9� 7:9 1:24� 1:16 0:08� 0:10

0:56 0:211 0:586 0:303� 0:077� 0:007 101:4� 6:3 18:6� 5:8 1:18� 0:58 0:16� 0:33

0:59 0:016 0:788 1:125� 0:243� 0:018 135:3� 12:9 26:4� 6:1 0:15� 0:13 0:09� 0:09

0:46 0:044 0:788 1:433� 0:295� 0:012 132:8� 10:2 25:2� 6:0 0:17� 0:15 0:08� 0:11

0:41 0:075 0:788 1:258� 0:268� 0:033 129:6� 9:7 26:3� 7:3 0:52� 0:54 0:08� 0:09

0:44 0:117 0:788 0:693� 0:154� 0:022 134:1� 14:4 25:8� 7:4 0:70� 0:62 0:06� 0:07

0:58 0:211 0:788 0:219� 0:050� 0:010 132:4� 18:0 20:5� 5:3 0:68� 0:35 0:15� 0:17

Table A.6: NuTeV forward di�erential cross-section for ���N ! �+��X at E � 222:14

GeV. The forward cross-section requires E�� � 5 GeV, and the cross-section values

should be multiplied by G2
FME=�. The �rst error given for the cross-sections is statis-

tical and the second systematic. Units are in GeV or GeV2, where appropriate, for the

averages of the kinematic quantities.
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�2 x y
d�(��N!���+X)

dxdy
j+

0:53 0:023 0:320 0:589� 0:129� 0:018

0:47 0:057 0:320 0:619� 0:110� 0:004

0:44 0:100 0:320 0:470� 0:082� 0:004

0:46 0:167 0:320 0:495� 0:081� 0:003

0:69 0:336 0:320 0:159� 0:024� 0:001

0:59 0:023 0:570 1:366� 0:223� 0:018

0:43 0:057 0:570 1:015� 0:160� 0:008

0:50 0:100 0:570 0:706� 0:103� 0:023

0:52 0:167 0:570 0:473� 0:067� 0:010

0:61 0:336 0:570 0:226� 0:034� 0:003

0:42 0:023 0:795 1:407� 0:223� 0:044

0:39 0:057 0:795 1:356� 0:202� 0:016

0:46 0:100 0:795 1:142� 0:172� 0:014

0:48 0:167 0:795 0:812� 0:136� 0:018

0:49 0:336 0:795 0:211� 0:040� 0:003

Table A.7: CCFR E744/E770 forward di�erential cross-section for ��N ! ���+X at

E � 109:46 GeV. The forward cross-section requires E�+ � 5 GeV, and the cross-section

values should be multiplied by G2
FME=�. The �rst error given for the cross-sections is

statistical and the second systematic. Units are in GeV or GeV2, where appropriate, for

the averages of the kinematic quantities.
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�2 x y
d�(��N!���+X)

dxdy
j+

0:58 0:023 0:320 1:327� 0:233� 0:005

0:45 0:057 0:320 1:160� 0:192� 0:036

0:46 0:100 0:320 0:931� 0:147� 0:005

0:41 0:167 0:320 0:567� 0:090� 0:003

0:68 0:336 0:320 0:254� 0:038� 0:004

0:57 0:023 0:570 1:571� 0:247� 0:007

0:43 0:057 0:570 1:673� 0:274� 0:013

0:42 0:100 0:570 1:381� 0:226� 0:007

0:43 0:167 0:570 0:912� 0:150� 0:009

0:55 0:336 0:570 0:261� 0:043� 0:002

0:46 0:023 0:795 1:636� 0:243� 0:028

0:45 0:057 0:795 1:582� 0:241� 0:010

0:38 0:100 0:795 1:092� 0:181� 0:004

0:45 0:167 0:795 0:814� 0:134� 0:003

0:54 0:336 0:795 0:230� 0:041� 0:003

Table A.8: CCFR E744/E770 forward di�erential cross-section for ��N ! ���+X at

E � 209:89 GeV. The forward cross-section requires E�+ � 5 GeV, and the cross-section

values should be multiplied by G2
FME=�. The �rst error given for the cross-sections is

statistical and the second systematic. Units are in GeV or GeV2, where appropriate, for

the averages of the kinematic quantities.
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�2 x y
d�(��N!���+X)

dxdy
j+

0:85 0:023 0:320 1:546� 0:234� 0:005

0:53 0:057 0:320 1:613� 0:256� 0:011

0:53 0:100 0:320 1:007� 0:157� 0:017

0:50 0:167 0:320 0:619� 0:095� 0:004

0:71 0:336 0:320 0:292� 0:041� 0:003

0:68 0:023 0:570 1:812� 0:300� 0:015

0:50 0:057 0:570 1:691� 0:299� 0:006

0:50 0:100 0:570 1:536� 0:272� 0:081

0:49 0:167 0:570 0:712� 0:126� 0:004

0:66 0:336 0:570 0:285� 0:048� 0:016

0:72 0:023 0:795 2:421� 0:342� 0:024

0:56 0:057 0:795 2:046� 0:320� 0:004

0:54 0:100 0:795 1:688� 0:285� 0:005

0:58 0:167 0:795 0:948� 0:159� 0:002

0:76 0:336 0:795 0:328� 0:060� 0:002

Table A.9: CCFR E744/E770 forward di�erential cross-section for ��N ! ���+X at

E � 332:70 GeV. The forward cross-section requires E�+ � 5 GeV, and the cross-section

values should be multiplied by G2
FME=�. The �rst error given for the cross-sections is

statistical and the second systematic. Units are in GeV or GeV2, where appropriate, for

the averages of the kinematic quantities.

103



�2 x y
d�(���N!�+��X)

dxdy
j+

0:40 0:017 0:356 0:332� 0:153� 0:073

0:43 0:040 0:356 0:483� 0:182� 0:027

0:38 0:068 0:356 0:484� 0:171� 0:009

0:40 0:109 0:356 0:342� 0:121� 0:150

0:60 0:206 0:356 0:140� 0:047� 0:001

0:24 0:017 0:596 1:171� 0:390� 0:062

0:28 0:040 0:596 1:152� 0:369� 0:032

0:31 0:068 0:596 0:660� 0:206� 0:021

0:33 0:109 0:596 0:684� 0:219� 0:065

0:48 0:206 0:596 0:173� 0:056� 0:004

0:10 0:017 0:803 1:165� 0:416� 0:117

0:15 0:040 0:803 0:928� 0:313� 0:073

0:17 0:068 0:803 0:974� 0:344� 0:055

0:31 0:109 0:803 0:912� 0:311� 0:033

0:45 0:206 0:803 0:305� 0:118� 0:005

Table A.10: CCFR E744/E770 forward di�erential cross-section for ���N ! �+��X at

E � 87:48 GeV. The forward cross-section requires E�� � 5 GeV, and the cross-section

values should be multiplied by G2
FME=�. The �rst error given for the cross-sections is

statistical and the second systematic. Units are in GeV or GeV2, where appropriate, for

the averages of the kinematic quantities.
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�2 x y
d�(���N!�+��X)

dxdy
j+

0:31 0:017 0:356 1:010� 0:396� 0:031

0:46 0:040 0:356 1:190� 0:415� 0:076

0:38 0:068 0:356 0:867� 0:304� 0:030

0:41 0:109 0:356 0:609� 0:206� 0:004

0:57 0:206 0:356 0:228� 0:074� 0:013

0:24 0:017 0:596 1:592� 0:566� 0:092

0:35 0:040 0:596 1:521� 0:529� 0:085

0:33 0:068 0:596 1:144� 0:406� 0:053

0:37 0:109 0:596 0:640� 0:227� 0:007

0:51 0:206 0:596 0:219� 0:075� 0:001

0:11 0:017 0:803 1:827� 0:577� 0:186

0:15 0:040 0:803 1:734� 0:594� 0:131

0:29 0:068 0:803 1:819� 0:604� 0:064

0:27 0:109 0:803 0:789� 0:275� 0:025

0:33 0:206 0:803 0:225� 0:082� 0:004

Table A.11: CCFR E744/E770 forward di�erential cross-section for ���N ! �+��X at

E � 160:70 GeV. The forward cross-section requires E�� � 5 GeV, and the cross-section

values should be multiplied by G2
FME=�. The �rst error given for the cross-sections is

statistical and the second systematic. Units are in GeV or GeV2, where appropriate, for

the averages of the kinematic quantities.
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�2 x y
d�(���N!�+��X)

dxdy
j+

0:69 0:017 0:356 2:295� 0:734� 0:007

0:55 0:040 0:356 1:324� 0:452� 0:014

0:54 0:068 0:356 1:375� 0:443� 0:008

0:47 0:109 0:356 0:619� 0:201� 0:005

0:68 0:206 0:356 0:161� 0:051� 0:012

0:44 0:017 0:596 2:844� 1:018� 0:102

0:44 0:040 0:596 1:847� 0:677� 0:021

0:40 0:068 0:596 1:249� 0:479� 0:011

0:44 0:109 0:596 1:012� 0:391� 0:003

0:60 0:206 0:596 0:262� 0:097� 0:001

0:16 0:017 0:803 2:539� 0:749� 0:220

0:26 0:040 0:803 1:517� 0:519� 0:060

0:38 0:068 0:803 0:792� 0:297� 0:039

0:49 0:109 0:803 0:569� 0:205� 0:019

0:68 0:206 0:803 0:275� 0:104� 0:001

Table A.12: CCFR E744/E770 forward di�erential cross-section for ���N ! �+��X at

E � 265:82 GeV. The forward cross-section requires E�� � 5 GeV, and the cross-section

values should be multiplied by G2
FME=�. The �rst error given for the cross-sections is

statistical and the second systematic. Units are in GeV or GeV2, where appropriate, for

the averages of the kinematic quantities.
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